IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p8097-d854386.html
   My bibliography  Save this article

Minimum Safety Factor Evaluation of Slopes Using Hybrid Chaotic Sand Cat and Pattern Search Approach

Author

Listed:
  • Amin Iraji

    (Engineering Faculty of Khoy, Urmia University of Technology, Urmia 57166-17165, Iran)

  • Javad Karimi

    (School of Mining Engineering, College of Engineering, University of Tehran, Tehran 14399-57131, Iran)

  • Suraparb Keawsawasvong

    (Department of Civil Engineering, Thammasat School of Engineering, Thammasat University, Bangkok 12120, Thailand)

  • Moncef L. Nehdi

    (Department of Civil Engineering, McMaster University, Hamilton, ON L8S 4M6, Canada)

Abstract

This study developed an efficient evolutionary hybrid optimization technique based on chaotic sand cat optimization (CSCO) and pattern search (PS) for the evaluation of the minimum safety factor of earth slopes under static and earthquake loading conditions. To improve the sand cat optimization approach’s exploration ability, while also avoiding premature convergence, the chaotic sequence was implemented. The proposed hybrid algorithm (CSCPS) benefits from the effective global search ability of the chaotic sand cat optimization, as well as the powerful local search capability of the pattern search method. The suggested CSCPS algorithm’s efficiency was confirmed by using mathematical test functions, and its findings were compared with standard SCO, as well as some efficient optimization techniques. Then the CSCPS was applied for the calculation of the minimum safety factors of the earth slope exposed to both static and seismic loads, and the objective function was modeled based on the Morgenstern–Price limit equilibrium method, along with the pseudo-static approach. The CSCPS’s efficacy for the evaluation of the minimum safety factor of slopes was investigated by considering two case studies from the literature. The numerical experiments demonstrate that the new algorithm could generate better optimal solutions via calculating lower values of safety factors by up to 10% compared with some other methods in the literature. Furthermore, the results show that, through an increase in the acceleration coefficient to 0.1 and 0.2, the factor of safety decreased by 19% and 32%, respectively.

Suggested Citation

  • Amin Iraji & Javad Karimi & Suraparb Keawsawasvong & Moncef L. Nehdi, 2022. "Minimum Safety Factor Evaluation of Slopes Using Hybrid Chaotic Sand Cat and Pattern Search Approach," Sustainability, MDPI, vol. 14(13), pages 1-23, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:8097-:d:854386
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/8097/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/8097/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Duan, Ditao & Poursoleiman, Roza, 2021. "Modified teaching-learning-based optimization by orthogonal learning for optimal design of an electric vehicle charging station," Utilities Policy, Elsevier, vol. 72(C).
    2. Yetao Ji & Jiaze Tu & Hanfeng Zhou & Wenyong Gui & Guoxi Liang & Huiling Chen & Mingjing Wang, 2020. "An Adaptive Chaotic Sine Cosine Algorithm for Constrained and Unconstrained Optimization," Complexity, Hindawi, vol. 2020, pages 1-36, October.
    3. Yılmaz Delice & Emel Kızılkaya Aydoğan & Uğur Özcan & Mehmet Sıtkı İlkay, 2017. "A modified particle swarm optimization algorithm to mixed-model two-sided assembly line balancing," Journal of Intelligent Manufacturing, Springer, vol. 28(1), pages 23-36, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammad Ehteram & Hojat Karami & Sayed Farhad Mousavi & Saaed Farzin & Alcigeimes B. Celeste & Ahmad-El Shafie, 2018. "Reservoir Operation by a New Evolutionary Algorithm: Kidney Algorithm," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(14), pages 4681-4706, November.
    2. Li, Zixiang & Kucukkoc, Ibrahim & Zhang, Zikai, 2020. "Branch, bound and remember algorithm for two-sided assembly line balancing problem," European Journal of Operational Research, Elsevier, vol. 284(3), pages 896-905.
    3. Mohammad Ehteram & Hojat Karami & Saeed Farzin, 2018. "Reservoir Optimization for Energy Production Using a New Evolutionary Algorithm Based on Multi-Criteria Decision-Making Models," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 32(7), pages 2539-2560, May.
    4. Mohammad Khajehzadeh & Suraparb Keawsawasvong & Moncef L. Nehdi, 2022. "Effective Hybrid Soft Computing Approach for Optimum Design of Shallow Foundations," Sustainability, MDPI, vol. 14(3), pages 1-20, February.
    5. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
    6. Liu, Yun & Heidari, Ali Asghar & Ye, Xiaojia & Liang, Guoxi & Chen, Huiling & He, Caitou, 2021. "Boosting slime mould algorithm for parameter identification of photovoltaic models," Energy, Elsevier, vol. 234(C).
    7. Li, Yuchen & Saldanha-da-Gama, Francisco & Liu, Ming & Yang, Zaoli, 2023. "A risk-averse two-stage stochastic programming model for a joint multi-item capacitated line balancing and lot-sizing problem," European Journal of Operational Research, Elsevier, vol. 304(1), pages 353-365.
    8. Minghai Yuan & Hongyan Yu & Jinting Huang & Aimin Ji, 2019. "Reconfigurable assembly line balancing for cloud manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 30(6), pages 2391-2405, August.
    9. Chen, Chengcheng & Wang, Xianchang & Yu, Helong & Wang, Mingjing & Chen, Huiling, 2021. "Dealing with multi-modality using synthesis of Moth-flame optimizer with sine cosine mechanisms," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 188(C), pages 291-318.
    10. Abid, Md. Shadman & Apon, Hasan Jamil & Hossain, Salman & Ahmed, Ashik & Ahshan, Razzaqul & Lipu, M.S. Hossain, 2024. "A novel multi-objective optimization based multi-agent deep reinforcement learning approach for microgrid resources planning," Applied Energy, Elsevier, vol. 353(PA).
    11. Ashish Yadav & Pawan Verma & Sunil Agrawal, 2020. "Mixed model two sided assembly line balancing problem: an exact solution approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 335-348, July.
    12. Singh, Priyanka & Kottath, Rahul, 2022. "Influencer-defaulter mutation-based optimization algorithms for predicting electricity prices," Utilities Policy, Elsevier, vol. 79(C).
    13. Bao Chao & Peng Liang & Chaoyong Zhang & Hongfei Guo, 2023. "Multi-Objective Optimization for Mixed-Model Two-Sided Disassembly Line Balancing Problem Considering Partial Destructive Mode," Mathematics, MDPI, vol. 11(6), pages 1-17, March.
    14. Lopes, Thiago Cantos & Michels, Adalberto Sato & Sikora, Celso Gustavo Stall & Molina, Rafael Gobbi & Magatão, Leandro, 2018. "Balancing and cyclically sequencing synchronous, asynchronous, and hybrid unpaced assembly lines," International Journal of Production Economics, Elsevier, vol. 203(C), pages 216-224.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:8097-:d:854386. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.