IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i13p8065-d854135.html
   My bibliography  Save this article

A Comprehensive Study of Artificial Intelligence Applications for Soil Temperature Prediction in Ordinary Climate Conditions and Extremely Hot Events

Author

Listed:
  • Hanifeh Imanian

    (School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada)

  • Juan Hiedra Cobo

    (National Research Council Canada, Ottawa, ON K1A 0R6, Canada)

  • Pierre Payeur

    (Computer Science Engineering Department, University of Ottawa, Ottawa, ON K1N 6N5, Canada)

  • Hamidreza Shirkhani

    (National Research Council Canada, Ottawa, ON K1A 0R6, Canada)

  • Abdolmajid Mohammadian

    (School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada)

Abstract

Soil temperature is a fundamental parameter in water resources and irrigation engineering. A cost-effective model that can accurately forecast soil temperature is urgently needed. Recently, many studies have applied artificial intelligence (AI) at both surface and underground levels for soil temperature predictions. In the present study, attempts are made to deliver a comprehensive and detailed assessment of the performance of a wide range of AI approaches in soil temperature prediction. In this regard, thirteen approaches, from classic regressions to well-established methods of random forest and gradient boosting to more advanced AI techniques, such as multi-layer perceptron and deep learning, are taken into account. Meanwhile, great varieties of land and atmospheric variables are applied as model inputs. A sensitivity analysis was conducted on input climate variables to determine the importance of each variable in predicting soil temperature. This examination reduced the number of input variables from 8 to 7, which decreased the simulation load. Additionally, this showed that air temperature and solar radiation play the most important roles in soil temperature prediction, while precipitation can be neglected in forecast AI models. The comparison of soil temperature predicted by different AI models showed that deep learning demonstrated the best performance with R-squared of 0.980 and NRMSE of 2.237%, followed by multi-layer perceptron with R-squared of 0.980 and NRMSE of 2.266%. In addition, the performance of developed AI models was evaluated in extremely hot events since heat warnings are essential to protect lives and properties. The assessment showed that deep learning and multi-layer perceptron methods still have the best prediction. However, their R-squared decreased to 0.862 and 0.859, and NRMSE increased to 6.519% and 6.601%, respectively.

Suggested Citation

  • Hanifeh Imanian & Juan Hiedra Cobo & Pierre Payeur & Hamidreza Shirkhani & Abdolmajid Mohammadian, 2022. "A Comprehensive Study of Artificial Intelligence Applications for Soil Temperature Prediction in Ordinary Climate Conditions and Extremely Hot Events," Sustainability, MDPI, vol. 14(13), pages 1-25, July.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:8065-:d:854135
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/13/8065/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/13/8065/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fanhua Yu & Huibowen Hao & Qingliang Li, 2021. "An Ensemble 3D Convolutional Neural Network for Spatiotemporal Soil Temperature Forecasting," Sustainability, MDPI, vol. 13(16), pages 1-16, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vahid Farhangmehr & Juan Hiedra Cobo & Abdolmajid Mohammadian & Pierre Payeur & Hamidreza Shirkhani & Hanifeh Imanian, 2023. "A Convolutional Neural Network Model for Soil Temperature Prediction under Ordinary and Hot Weather Conditions: Comparison with a Multilayer Perceptron Model," Sustainability, MDPI, vol. 15(10), pages 1-21, May.
    2. Mercedeh Taheri & Helene Katherine Schreiner & Abdolmajid Mohammadian & Hamidreza Shirkhani & Pierre Payeur & Hanifeh Imanian & Juan Hiedra Cobo, 2023. "A Review of Machine Learning Approaches to Soil Temperature Estimation," Sustainability, MDPI, vol. 15(9), pages 1-26, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mercedeh Taheri & Helene Katherine Schreiner & Abdolmajid Mohammadian & Hamidreza Shirkhani & Pierre Payeur & Hanifeh Imanian & Juan Hiedra Cobo, 2023. "A Review of Machine Learning Approaches to Soil Temperature Estimation," Sustainability, MDPI, vol. 15(9), pages 1-26, May.
    2. Vahid Farhangmehr & Juan Hiedra Cobo & Abdolmajid Mohammadian & Pierre Payeur & Hamidreza Shirkhani & Hanifeh Imanian, 2023. "A Convolutional Neural Network Model for Soil Temperature Prediction under Ordinary and Hot Weather Conditions: Comparison with a Multilayer Perceptron Model," Sustainability, MDPI, vol. 15(10), pages 1-21, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:8065-:d:854135. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.