The Impact of COVID-19 Control Measures on Air Quality in Guangdong Province
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Svajone Bekesiene & Ieva Meidute-Kavaliauskiene & Vaida Vasiliauskiene, 2021. "Accurate Prediction of Concentration Changes in Ozone as an Air Pollutant by Multiple Linear Regression and Artificial Neural Networks," Mathematics, MDPI, vol. 9(4), pages 1-21, February.
- Ting Yin Tiffany Wong & Yuan Xu & Youngho Chang, 2020. "Cross-Boundary Air Pollution Control Under “One Country, Two Systems”: Perspectives From Hong Kong–Guangdong Collaboration," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 65(03), pages 601-625, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Svajone Bekesiene & Ieva Meidute-Kavaliauskiene, 2022. "Artificial Neural Networks for Modelling and Predicting Urban Air Pollutants: Case of Lithuania," Sustainability, MDPI, vol. 14(4), pages 1-24, February.
- NurIzzah M. Hashim & Norazian Mohamed Noor & Ahmad Zia Ul-Saufie & Andrei Victor Sandu & Petrica Vizureanu & György Deák & Marwan Kheimi, 2022. "Forecasting Daytime Ground-Level Ozone Concentration in Urbanized Areas of Malaysia Using Predictive Models," Sustainability, MDPI, vol. 14(13), pages 1-23, June.
- Vitor Joao Pereira Domingues MARTINHO, 2023. "Energy Crops: Assessments In The European Union Agricultural Regions Through Machine Learning Approaches," Regional Science Inquiry, Hellenic Association of Regional Scientists, vol. 0(1), pages 29-42, June.
- Jelica Komarica & Draženko Glavić & Snežana Kaplanović, 2024. "Comparative Analysis of the Predictive Performance of an ANN and Logistic Regression for the Acceptability of Eco-Mobility Using the Belgrade Data Set," Data, MDPI, vol. 9(5), pages 1-22, May.
More about this item
Keywords
COVID-19 epidemic control; potential source factor; long short-term memory neural network; Guangdong Province;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:13:p:7853-:d:849410. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.