IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i12p7490-d842875.html
   My bibliography  Save this article

Sociotechnological Sustainability in Pasture Management: Labor Input and Optimization Potential of Smart Tools to Measure Herbage Mass and Quality

Author

Listed:
  • Leonie Hart

    (Competitiveness and System Evaluation, Agroscope, Tänikon 1, 8356 Ettenhausen, Switzerland
    Institute of Agricultural Sciences in the Tropics, University of Hohenheim, Fruwirthstrasse 31, 70599 Stuttgart, Germany)

  • Elisabeth Quendler

    (Institute of Agricultural Engineering, University of Natural Resources and Life Sciences, Peter-Jordan-Strasse 82, 1190 Vienna, Austria)

  • Christina Umstaetter

    (Competitiveness and System Evaluation, Agroscope, Tänikon 1, 8356 Ettenhausen, Switzerland
    Thuenen Institute of Agricultural Technology, Bundesallee 47, 38116 Braunschweig, Germany)

Abstract

Investing labor time in herbage measurements is important for precision pasture management. In this study, the labor input of three smart herbage measurement tools—multispectral imagery linked to an unmanned aerial vehicle (UAV), a semi-automated rising plate meter (RPM), and near-infrared reflectance spectroscopy (NIRS) of cut herbage samples—and of direct observation was modeled based on the REFA work element method. Three to five users were observed during work execution to identify best-practice workflows. Time measurements were conducted using video footage. The resulting standard times of work elements were used to model labor input for herbage measurements in different farm sizes (i.e., milking platforms of 6–100 ha) and subdivisions of a farm’s milking platform (i.e., 4–45 paddocks). Labor time requirement differed between the smart farming tools (0.7–5.9 h) depending on the farm size and milking platform scenario. The labor time requirement increased for all tools with an increase in farm size and was lowest for the RPM. For the UAV tool, it did not increase noticeably when the division of the milking platform changed. Nevertheless, the potential to save time was identified for the UAV and the NIRS. Therefore, the automation of certain steps in the workflows would contribute to sociotechnological sustainable pasture management.

Suggested Citation

  • Leonie Hart & Elisabeth Quendler & Christina Umstaetter, 2022. "Sociotechnological Sustainability in Pasture Management: Labor Input and Optimization Potential of Smart Tools to Measure Herbage Mass and Quality," Sustainability, MDPI, vol. 14(12), pages 1-23, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7490-:d:842875
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/12/7490/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/12/7490/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anja Scheurich & Alexandra Penicka & Stefan Hörtenhuber & Thomas Lindenthal & Elisabeth Quendler & Werner Zollitsch, 2021. "Elements of Social Sustainability among Austrian Hay Milk Farmers: Between Satisfaction and Stress," Sustainability, MDPI, vol. 13(23), pages 1-20, November.
    2. Robert Finger & Scott M. Swinton & Nadja El Benni & Achim Walter, 2019. "Precision Farming at the Nexus of Agricultural Production and the Environment," Annual Review of Resource Economics, Annual Reviews, vol. 11(1), pages 313-335, October.
    3. Agnes van den Pol-van Dasselaar & Deirdre Hennessy & Johannes Isselstein, 2020. "Grazing of Dairy Cows in Europe—An In-Depth Analysis Based on the Perception of Grassland Experts," Sustainability, MDPI, vol. 12(3), pages 1-18, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schroer-Merker, Eva & Westbrooke, Victoria, 2020. "UK agricultural students’ perceptions of future technology use on-farm," Agri-Tech Economics Papers 308134, Harper Adams University, Land, Farm & Agribusiness Management Department.
    2. Vecchio, Yari & De Rosa, Marcello & Adinolfi, Felice & Bartoli, Luca & Masi, Margherita, 2020. "Adoption of precision farming tools: A context-related analysis," Land Use Policy, Elsevier, vol. 94(C).
    3. Ponieman, Karen D. & Bongiovanni, Rodolfo & Battaglia, Martin L. & Hilbert, Jorge A. & Cipriotti, Pablo A. & Espósito, Gabriel, 2023. "Site-specific calculation of corn bioethanol carbon footprint with Life Cycle Assessment," Agri-Tech Economics Papers 344397, Harper Adams University, Land, Farm & Agribusiness Management Department.
    4. Ponieman, Karen D. & Bongiovanni, Rodolfo & Battaglia, Martin L. & Hilbert, Jorge A. & Cipriotti, Pablo A. & Espósito, Gabriel, 2023. "Site-specific calculation of corn bioethanol carbon footprint with Life Cycle Assessment," Land, Farm & Agribusiness Management Department 344397, Harper Adams University, Land, Farm & Agribusiness Management Department.
    5. Shang, Linmei & Heckelei, Thomas & Gerullis, Maria K. & Börner, Jan & Rasch, Sebastian, 2021. "Adoption and diffusion of digital farming technologies - integrating farm-level evidence and system interaction," Agricultural Systems, Elsevier, vol. 190(C).
    6. Argento, F. & Liebisch, F. & Anken, T. & Walter, A. & El Benni, N., 2022. "Investigating two solutions to balance revenues and N surplus in Swiss winter wheat," Agricultural Systems, Elsevier, vol. 201(C).
    7. Harkness, Caroline & Areal, Francisco J. & Semenov, Mikhail A. & Senapati, Nimai & Shield, Ian F. & Bishop, Jacob, 2023. "Towards stability of food production and farm income in a variable climate," Ecological Economics, Elsevier, vol. 204(PA).
    8. Iris Vogeler & Christof Kluß & Tammo Peters & Friedhelm Taube, 2023. "How Much Complexity Is Required for Modelling Grassland Production at Regional Scales?," Land, MDPI, vol. 12(2), pages 1-18, January.
    9. Metta, Matteo & Ciliberti, Stefano & Obi, Chinedu & Bartolini, Fabio & Klerkx, Laurens & Brunori, Gianluca, 2022. "An integrated socio-cyber-physical system framework to assess responsible digitalisation in agriculture: A first application with Living Labs in Europe," Agricultural Systems, Elsevier, vol. 203(C).
    10. Maurício Roberto Cherubin & Júnior Melo Damian & Tiago Rodrigues Tavares & Rodrigo Gonçalves Trevisan & André Freitas Colaço & Mateus Tonini Eitelwein & Maurício Martello & Ricardo Yassushi Inamasu & , 2022. "Precision Agriculture in Brazil: The Trajectory of 25 Years of Scientific Research," Agriculture, MDPI, vol. 12(11), pages 1-29, November.
    11. Gonzalez-Martinez, Ana & Jongeneel, Roel & Salamon, Petra, 2021. "Lighting on the Road to Explore Future Directions for Agricultural Modelling in the EU – some Considerations on what Needs to be Done," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 12(03), September.
    12. Osrof, Hazem Yusuf & Tan, Cheng Ling & Angappa, Gunasekaran & Yeo, Sook Fern & Tan, Kim Hua, 2023. "Adoption of smart farming technologies in field operations: A systematic review and future research agenda," Technology in Society, Elsevier, vol. 75(C).
    13. Niklas Möhring & Martina Bozzola & Stefan Hirsch & Robert Finger, 2020. "Are pesticides risk decreasing? The relevance of pesticide indicator choice in empirical analysis," Agricultural Economics, International Association of Agricultural Economists, vol. 51(3), pages 429-444, May.
    14. Meier, Laura & Brauns, Mario & Grimm, Volker & Weitere, Markus & Frank, Karin, 2022. "MASTIFF: A mechanistic model for cross-scale analyses of the functioning of multiple stressed riverine ecosystems," Ecological Modelling, Elsevier, vol. 470(C).
    15. Ingram, Julie & Maye, Damian & Bailye, Clive & Barnes, Andrew & Bear, Christopher & Bell, Matthew & Cutress, David & Davies, Lynfa & de Boon, Auvikki & Dinnie, Liz & Gairdner, Julian & Hafferty, Caitl, 2022. "What are the priority research questions for digital agriculture?," Land Use Policy, Elsevier, vol. 114(C).
    16. Gackstetter, David & von Bloh, Malte & Hannus, Veronika & Meyer, Sebastian T. & Weisser, Wolfgang & Luksch, Claudia & Asseng, Senthold, 2023. "Autonomous field management – An enabler of sustainable future in agriculture," Agricultural Systems, Elsevier, vol. 206(C).
    17. Yari Vecchio & Giulio Paolo Agnusdei & Pier Paolo Miglietta & Fabian Capitanio, 2020. "Adoption of Precision Farming Tools: The Case of Italian Farmers," IJERPH, MDPI, vol. 17(3), pages 1-16, January.
    18. Bartosz Bartkowski & Nils Droste & Mareike Lie{ss} & William Sidemo-Holm & Ulrich Weller & Mark V. Brady, 2019. "Implementing result-based agri-environmental payments by means of modelling," Papers 1908.08219, arXiv.org, revised Dec 2020.
    19. Oksana Hrynevych & Miguel Blanco Canto & Mercedes Jiménez García, 2022. "Tendencies of Precision Agriculture in Ukraine: Disruptive Smart Farming Tools as Cooperation Drivers," Agriculture, MDPI, vol. 12(5), pages 1-15, May.
    20. Shang, Linmei & Heckelei, Thomas & Börner, Jan & Rasch, Sebastian, 2020. "Adoption and Diffusion of Digital Farming Technologies – Integrating Farm-Level Evidence and System-Level Interaction," 60th Annual Conference, Halle/ Saale, Germany, September 23-25, 2020 305586, German Association of Agricultural Economists (GEWISOLA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7490-:d:842875. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.