IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i12p7253-d838062.html
   My bibliography  Save this article

Fatigue Crack Propagation and Life Analysis of Stud Connectors in Steel-Concrete Composite Structures

Author

Listed:
  • Da Wang

    (School of Civil Engineering, Central South University of Forestry and Technology, Changsha 410004, China
    School of Civil Engineering, Changsha University of Science & Technology, Changsha 410114, China)

  • Benkun Tan

    (School of Civil Engineering, Changsha University of Science & Technology, Changsha 410114, China)

  • Shengtao Xiang

    (School of Civil Engineering, Changsha University of Science & Technology, Changsha 410114, China)

  • Xie Wang

    (School of Civil Engineering, Changsha University of Science & Technology, Changsha 410114, China)

Abstract

To investigate the fatigue performance of the stud connectors of steel-concrete structures, fatigue crack propagation analysis and fatigue life calculation were carried out. Firstly, the finite element model with the initial crack based on linear elastic fracture mechanics (LEFM) was established, and the parameter analysis of the stress intensity factors (SIFs) of the studs and cracks with different geometric sizes was performed. Then, the propagation with mixed-type fatigue crack and I-type fatigue crack of the stud were calculated, and the variation of effective SIFs with the fatigue crack depth was analyzed. Finally, the flow chart of stud fatigue life evaluation which considers crack initiation and stable propagation was presented, and the short stud of steel-UHPC composite structures was taken as an example and verified. The calculation results show that the fatigue crack propagation type and the initial crack have an obvious influence on the fatigue life of the stud. It has acceptable accuracy that the fatigue life of short stud in UHPC simulated by considering the crack initiation. The critical damage parameters are greatly affected by the fatigue stress amplitude, and the initiation life of fatigue crack can account for more than 90% of the total fatigue life. This paper can provide a reference for evaluating the fatigue performance of studs in steel-concrete composite structures. Accurate evaluation of the fatigue life of stud connectors conforms to the concept of sustainable development.

Suggested Citation

  • Da Wang & Benkun Tan & Shengtao Xiang & Xie Wang, 2022. "Fatigue Crack Propagation and Life Analysis of Stud Connectors in Steel-Concrete Composite Structures," Sustainability, MDPI, vol. 14(12), pages 1-19, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7253-:d:838062
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/12/7253/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/12/7253/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alex H. Whitworth & Konstantinos Daniel Tsavdaridis, 2020. "Genetic Algorithm for Embodied Energy Optimisation of Steel-Concrete Composite Beams," Sustainability, MDPI, vol. 12(8), pages 1-17, April.
    2. Dengfeng Yang, 2021. "Analysis of Fracture Mechanics Theory of the First Fracture Mechanism of Main Roof and Support Resistance with Large Mining Height in a Shallow Coal Seam," Sustainability, MDPI, vol. 13(4), pages 1-24, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jun Zhang & Da Wang & Shengtao Xiang & Yang Liu & Benkun Tan & Donghuang Yan, 2022. "Optimization Method of Temperature Measuring Point Layout for Steel-Concrete Composite Bridge Based on TLS-IPDP," Sustainability, MDPI, vol. 14(15), pages 1-24, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Felipe Piana Vendramell Ferreira & Konstantinos Daniel Tsavdaridis & Carlos Humberto Martins & Silvana De Nardin, 2021. "Steel-Concrete Composite Beams with Precast Hollow-Core Slabs: A Sustainable Solution," Sustainability, MDPI, vol. 13(8), pages 1-25, April.
    2. Laurentiu-Mihai Ionescu & Nicu Bizon & Alin-Gheorghita Mazare & Nadia Belu, 2020. "Reducing the Cost of Electricity by Optimizing Real-Time Consumer Planning Using a New Genetic Algorithm-Based Strategy," Mathematics, MDPI, vol. 8(7), pages 1-26, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7253-:d:838062. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.