IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i12p7203-d837291.html
   My bibliography  Save this article

Urban Resource Assessment, Management, and Planning Tools for Land, Ecosystems, Urban Climate, Water, and Materials—A Review

Author

Listed:
  • Rebekka Volk

    (Institute for Industrial Production (IIP), Karlsruhe Institute of Technology (KIT), 76187 Karlsruhe, Germany)

  • Mihir Rambhia

    (Institute for Industrial Production (IIP), Karlsruhe Institute of Technology (KIT), 76187 Karlsruhe, Germany)

  • Elias Naber

    (Institute for Industrial Production (IIP), Karlsruhe Institute of Technology (KIT), 76187 Karlsruhe, Germany)

  • Frank Schultmann

    (Institute for Industrial Production (IIP), Karlsruhe Institute of Technology (KIT), 76187 Karlsruhe, Germany)

Abstract

Increasing awareness of global and local climate change and the limited resources of land, surface, water, raw materials, urban green spaces, and biodiversity alter the exigencies of urban development. Already perceivable local climate changes such as heavy rains, droughts, and urban heat islands urge planners to take action. Particularly in densely populated areas, conflicting interests are pre-programmed, and decision making has to include multiple impacts, mutual competition, and interaction with respect to investments into provisioning services. Urban planners and municipal enterprises increasingly work with digital tools for urban planning and management to improve the processes of identifying social or urbanistic problems and redevelopment strategies. For this, they use 2D/3D city models, land survey registers, land use and re-/development plans or other official data. Moreover, they increasingly request data-based planning tools to identify and face said challenges and to assess potential interventions holistically. Thus, this contribution provides a review of 51 current tools. Simple informational tools, such as visualizations or GIS viewers, are widely available. However, databases and tools for explicit and data-based urban resource management are sparse. Only a few focus on integrated assessment, decision, and planning support with respect to impact and cost assessments, real-time dashboards, forecasts, scenario analyses, and comparisons of alternative options.

Suggested Citation

  • Rebekka Volk & Mihir Rambhia & Elias Naber & Frank Schultmann, 2022. "Urban Resource Assessment, Management, and Planning Tools for Land, Ecosystems, Urban Climate, Water, and Materials—A Review," Sustainability, MDPI, vol. 14(12), pages 1-22, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7203-:d:837291
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/12/7203/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/12/7203/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Herbert, Alan & Arthur, Simon & Chillingworth, Grace, 2013. "Thermal modelling of large scale exploitation of ground source energy in urban aquifers as a resource management tool," Applied Energy, Elsevier, vol. 109(C), pages 94-103.
    2. Daniel Otero Peña & Daniela Perrotti & Eugene Mohareb, 2022. "Advancing urban metabolism studies through GIS data: Resource flows, open space networks, and vulnerable communities in Mexico City," Journal of Industrial Ecology, Yale University, vol. 26(4), pages 1333-1349, August.
    3. McKenna, R. & Bertsch, V. & Mainzer, K. & Fichtner, W., 2018. "Combining local preferences with multi-criteria decision analysis and linear optimization to develop feasible energy concepts in small communities," European Journal of Operational Research, Elsevier, vol. 268(3), pages 1092-1110.
    4. Hossein Shahrokni & David Lazarevic & Nils Brandt, 2015. "Smart Urban Metabolism: Towards a Real-Time Understanding of the Energy and Material Flows of a City and Its Citizens," Journal of Urban Technology, Taylor & Francis Journals, vol. 22(1), pages 65-86, January.
    5. Ilse M. Voskamp & Claudia de Luca & Monserrat Budding Polo-Ballinas & Helena Hulsman & Reinder Brolsma, 2021. "Nature-Based Solutions Tools for Planning Urban Climate Adaptation: State of the Art," Sustainability, MDPI, vol. 13(11), pages 1-17, June.
    6. Ferrari, Simone & Zagarella, Federica & Caputo, Paola & Bonomolo, Marina, 2019. "Assessment of tools for urban energy planning," Energy, Elsevier, vol. 176(C), pages 544-551.
    7. Fabian Dembski & Uwe Wössner & Mike Letzgus & Michael Ruddat & Claudia Yamu, 2020. "Urban Digital Twins for Smart Cities and Citizens: The Case Study of Herrenberg, Germany," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    8. Geoff Boeing & Carl Higgs & Shiqin Liu & Billie Giles-Corti & James F Sallis & Ester Cerin & Melanie Lowe & Deepti Adlakha & Erica Hinckson & Anne Vernez Moudon & Deborah Salvo & Marc A Adams & Ligia , 2022. "Using Open Data and Open-Source Software to Develop Spatial Indicators of Urban Design and Transport Features for Achieving Healthy and Sustainable Cities," Papers 2205.05240, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Matthew Callcut & Jean-Paul Cerceau Agliozzo & Liz Varga & Lauren McMillan, 2021. "Digital Twins in Civil Infrastructure Systems," Sustainability, MDPI, vol. 13(20), pages 1-32, October.
    3. Ekaterina V. Orlova, 2022. "Design Technology and AI-Based Decision Making Model for Digital Twin Engineering," Future Internet, MDPI, vol. 14(9), pages 1-14, August.
    4. Sommer, Wijbrand & Valstar, Johan & Leusbrock, Ingo & Grotenhuis, Tim & Rijnaarts, Huub, 2015. "Optimization and spatial pattern of large-scale aquifer thermal energy storage," Applied Energy, Elsevier, vol. 137(C), pages 322-337.
    5. Andreea Orîndaru & Mihaela Constantinescu & Claudia-Elena Țuclea & Ștefan-Claudiu Căescu & Margareta Stela Florescu & Ionel Dumitru, 2020. "Rurbanization—Making the City Greener: Young Citizen Implication and Future Actions," Sustainability, MDPI, vol. 12(17), pages 1-20, September.
    6. McKenna, R. & Bertsch, V. & Mainzer, K. & Fichtner, W., 2018. "Combining local preferences with multi-criteria decision analysis and linear optimization to develop feasible energy concepts in small communities," European Journal of Operational Research, Elsevier, vol. 268(3), pages 1092-1110.
    7. Fouladvand, Javanshir & Aranguren Rojas, Maria & Hoppe, Thomas & Ghorbani, Amineh, 2022. "Simulating thermal energy community formation: Institutional enablers outplaying technological choice," Applied Energy, Elsevier, vol. 306(PA).
    8. Ezbakhe, Fatine & Pérez-Foguet, Agustí, 2021. "Decision analysis for sustainable development: The case of renewable energy planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 291(2), pages 601-613.
    9. Ahmad, Tanveer & Madonski, Rafal & Zhang, Dongdong & Huang, Chao & Mujeeb, Asad, 2022. "Data-driven probabilistic machine learning in sustainable smart energy/smart energy systems: Key developments, challenges, and future research opportunities in the context of smart grid paradigm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    10. Özden Tozanlı & Elif Kongar & Surendra M. Gupta, 2020. "Evaluation of Waste Electronic Product Trade-in Strategies in Predictive Twin Disassembly Systems in the Era of Blockchain," Sustainability, MDPI, vol. 12(13), pages 1-33, July.
    11. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2016. "Influence of spatially variable ground heat flux on closed-loop geothermal systems: Line source model with nonhomogeneous Cauchy-type top boundary conditions," Applied Energy, Elsevier, vol. 180(C), pages 572-585.
    12. Axel Bruck & Luca Casamassima & Ardak Akhatova & Lukas Kranzl & Kostas Galanakis, 2022. "Creating Comparability among European Neighbourhoods to Enable the Transition of District Energy Infrastructures towards Positive Energy Districts," Energies, MDPI, vol. 15(13), pages 1-21, June.
    13. Weinand, Jann & Scheller, Fabian Johannes & McKenna, Russell, 2020. "Reviewing energy system modelling of decentralized energy autonomy," Working Paper Series in Production and Energy 41, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
    14. Epting, Jannis & Böttcher, Fabian & Mueller, Matthias H. & García-Gil, Alejandro & Zosseder, Kai & Huggenberger, Peter, 2020. "City-scale solutions for the energy use of shallow urban subsurface resources – Bridging the gap between theoretical and technical potentials," Renewable Energy, Elsevier, vol. 147(P1), pages 751-763.
    15. Andreea Loredana Bîrgovan & Elena Simina Lakatos & Andrea Szilagyi & Lucian Ionel Cioca & Roxana Lavinia Pacurariu & George Ciobanu & Elena Cristina Rada, 2022. "How Should We Measure? A Review of Circular Cities Indicators," IJERPH, MDPI, vol. 19(9), pages 1-16, April.
    16. Sacha Hodencq & Mathieu Brugeron & Jaume Fitó & Lou Morriet & Benoit Delinchant & Frédéric Wurtz, 2021. "OMEGAlpes, an Open-Source Optimisation Model Generation Tool to Support Energy Stakeholders at District Scale," Energies, MDPI, vol. 14(18), pages 1-30, September.
    17. Mona Jabbari & Zahra Ahmadi & Rui Ramos, 2022. "Defining a Digital System for the Pedestrian Network as a Conceptual Implementation Framework," Sustainability, MDPI, vol. 14(5), pages 1-11, February.
    18. Liansheng Hu & Yongqin Xi, 2023. "Evaluation of Effective Factors in Achieving Ecological City in the Direction of Sustainable Development," Sustainability, MDPI, vol. 15(8), pages 1-16, April.
    19. Yazdanie, M. & Orehounig, K., 2021. "Advancing urban energy system planning and modeling approaches: Gaps and solutions in perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    20. Paz Fernández & Matías Ceacero-Moreno, 2021. "Urban Sustainability and Natural Hazards Management; Designs Using Simulations," Sustainability, MDPI, vol. 13(2), pages 1-26, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:7203-:d:837291. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.