IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i12p6962-d833134.html
   My bibliography  Save this article

Multivariate Statistical Analysis and Structural Sovereignty for Geochemical Assessment and Groundwater Prevalence in Bahariya Oasis, Western Desert, Egypt

Author

Listed:
  • Mohamed Abd El-Wahed

    (Geology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt)

  • Mohamed M. El-Horiny

    (Geology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt)

  • Mahmoud Ashmawy

    (Geology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt)

  • Samar Abd El Kereem

    (Geology Department, Faculty of Science, Tanta University, Tanta 31527, Egypt)

Abstract

The Bahariya Oasis is an example of an extremely hyperarid environment and it is characterized by an extensive nonrenewable Nubian Sandstone Aquifer System (NSAS), which is deemed the crucial provenance for agrarian and national development ventures. The present work aimed to assess the groundwater occurrences in the NSAS, and to document the main factors that control the geochemistry of the groundwater in the Bahariya Oasis. Groundwater samples were collected from 52 locations in April 2019 and were analyzed for a total of 13 water-quality physicochemical parameters. A diverse geological and structural setup has greatly impacted the groundwater flow pattern and has diverted it towards the NE by the great Bahariya anticline structure, the ENE-oriented Bahariya mid dextral strike-slip fault, and NE-striking normal faults, while NW-oriented normal faults cause the groundwater to diverge perpendicular to the groundwater flow lines. The groundwater is highly contaminated by trace metals (Fe 2+ and Mn 2+ ), which exceed the permissible limit for different purposes. Conventional graphical plots and geochemical modeling integrated with multivariate factor analysis (FA) revealed that the chemical composition of the groundwater is strongly affected by its interaction with the lithologies of the NSAS. The dissolution of aquifer host rocks (carbonates and iron oxides) and chloride salts through the infiltration of groundwater, and the incorporation of cations by the ionic exchange of Na + by Ca 2+ in clay minerals, emerged as worthy mechanisms for the groundwater development. Furthermore, the region’s rapidly increasing population, agricultural expansion, and the associated anthropogenic practices have generated a need for groundwater-quality assurance as a prime source of the water supply. Consequently, reducing the effects of the NSAS’s unsustainable extraction requires long-term monitoring and the ongoing evaluation of the groundwater.

Suggested Citation

  • Mohamed Abd El-Wahed & Mohamed M. El-Horiny & Mahmoud Ashmawy & Samar Abd El Kereem, 2022. "Multivariate Statistical Analysis and Structural Sovereignty for Geochemical Assessment and Groundwater Prevalence in Bahariya Oasis, Western Desert, Egypt," Sustainability, MDPI, vol. 14(12), pages 1-27, June.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:6962-:d:833134
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/12/6962/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/12/6962/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lazhar Belkhiri & Tahoora Narany, 2015. "Using Multivariate Statistical Analysis, Geostatistical Techniques and Structural Equation Modeling to Identify Spatial Variability of Groundwater Quality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 2073-2089, April.
    2. Ching-Ping Liang & Chia-Hui Wang & Sheng-Wei Wang & Ta-Wei Chang & Jui-Sheng Chen, 2020. "Application of Factor Analysis for Characterizing the Relationships between Groundwater Quality and Land Use in Taiwan’s Pingtung Plain," Sustainability, MDPI, vol. 12(24), pages 1-22, December.
    3. Amjath-Babu, T.S. & Krupnik, Timothy J. & Kaechele, Harald & Aravindakshan, Sreejith & Sietz, Diana, 2016. "Transitioning to groundwater irrigated intensified agriculture in Sub-Saharan Africa: An indicator based assessment," Agricultural Water Management, Elsevier, vol. 168(C), pages 125-135.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silvia Saravia-Matus & T. S. Amjath-Babu & Sreejith Aravindakshan & Stefan Sieber & Jimmy A. Saravia & Sergio Gomez y Paloma, 2021. "Can Enhancing Efficiency Promote the Economic Viability of Smallholder Farmers? A Case of Sierra Leone," Sustainability, MDPI, vol. 13(8), pages 1-17, April.
    2. Józef Ober & Janusz Karwot, 2021. "Tap Water Quality: Seasonal User Surveys in Poland," Energies, MDPI, vol. 14(13), pages 1-22, June.
    3. Ali Athamena & Aissam Gaagai & Hani Amir Aouissi & Juris Burlakovs & Selma Bencedira & Ivar Zekker & Andrey E. Krauklis, 2022. "Chemometrics of the Environment: Hydrochemical Characterization of Groundwater in Lioua Plain (North Africa) Using Time Series and Multivariate Statistical Analysis," Sustainability, MDPI, vol. 15(1), pages 1-28, December.
    4. Scheumann, Waltina & Phiri, George, 2018. "Coordination: the key to governing the water-land-food nexus in Zambia?," IDOS Discussion Papers 20/2018, German Institute of Development and Sustainability (IDOS).
    5. Mwangi Joseph Kanyua, 2020. "Effect of Imposed Self-Governance on Irrigation Rules Design among Horticultural Producers in Peri-Urban Kenya," Sustainability, MDPI, vol. 12(17), pages 1-16, August.
    6. Stergios Emmanouil & Jason Philhower & Sophie Macdonald & Fahad Khan Khadim & Meijian Yang & Ezana Atsbeha & Himaja Nagireddy & Natalie Roach & Elizabeth Holzer & Emmanouil N. Anagnostou, 2021. "A Comprehensive Approach to the Design of a Renewable Energy Microgrid for Rural Ethiopia: The Technical and Social Perspectives," Sustainability, MDPI, vol. 13(7), pages 1-22, April.
    7. Aliasghar Azma & Esmaeil Narreie & Abouzar Shojaaddini & Nima Kianfar & Ramin Kiyanfar & Seyed Mehdi Seyed Alizadeh & Afshin Davarpanah, 2021. "Statistical Modeling for Spatial Groundwater Potential Map Based on GIS Technique," Sustainability, MDPI, vol. 13(7), pages 1-18, March.
    8. Sietz, Diana & Conradt, Tobias & Krysanova, Valentina & Hattermann, Fred F. & Wechsung, Frank, 2021. "The Crop Generator: Implementing crop rotations to effectively advance eco-hydrological modelling," Agricultural Systems, Elsevier, vol. 193(C).
    9. Srijna Jha & Harald Kaechele & Marcos Lana & T.S Amjath-Babu & Stefan Sieber, 2020. "Exploring Farmers’ Perceptions of Agricultural Technologies: A Case Study from Tanzania," Sustainability, MDPI, vol. 12(3), pages 1-21, January.
    10. Tahoora Sheikhy Narany & Mohammad Ramli & Kazem Fakharian & Ahmad Aris & Wan Sulaiman, 2015. "Multi-Objective Based Approach for Groundwater Quality Monitoring Network Optimization," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(14), pages 5141-5156, November.
    11. Mohamed Alfy & Aref Lashin & Nassir Al-Arifi & Abdulaziz Al-Bassam, 2015. "Groundwater Characteristics and Pollution Assessment Using Integrated Hydrochemical Investigations GIS and Multivariate Geostatistical Techniques in Arid Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5593-5612, December.
    12. Franklin Obiri-Nyarko & Stephen Junior Asugre & Sandra Vincentia Asare & Anthony Appiah Duah & Anthony Yaw Karikari & Jolanta Kwiatkowska-Malina & Grzegorz Malina, 2022. "Hydrogeochemical Studies to Assess the Suitability of Groundwater for Drinking and Irrigation Purposes: The Upper East Region of Ghana Case Study," Agriculture, MDPI, vol. 12(12), pages 1-22, November.
    13. Soumaya Hajji & Sedki Karoui & Ghada Nasri & Nabila Allouche & Salem Bouri, 2021. "EFA-CFA integrated approach for groundwater resources sustainability in agricultural areas under data scarcity challenge: case study of the Souassi aquifer, Central-eastern Tunisia," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(8), pages 12024-12043, August.
    14. Jeremy Dominic & Ahmad Aris & Wan Sulaiman, 2015. "Factors Controlling the Suspended Sediment Yield During Rainfall Events of Dry and Wet Weather Conditions in A Tropical Urban Catchment," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(12), pages 4519-4538, September.
    15. Can Bülent Karakuş, 2020. "Evaluation of water quality of Kızılırmak River (Sivas/Turkey) using geo-statistical and multivariable statistical approaches," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4735-4769, June.
    16. Aravindakshan, Sreejith & Krupnik, Timothy J. & Groot, Jeroen C.J. & Speelman, Erika N. & Amjath- Babu, T.S. & Tittonell, Pablo, 2020. "Multi-level socioecological drivers of agrarian change: Longitudinal evidence from mixed rice-livestock-aquaculture farming systems of Bangladesh," Agricultural Systems, Elsevier, vol. 177(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:12:p:6962-:d:833134. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.