IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i11p6479-d823971.html
   My bibliography  Save this article

Characteristics and Assessment of Soil Heavy Metals Pollution in the Xiaohe River Irrigation Area of the Loess Plateau, China

Author

Listed:
  • Zhilong Meng

    (Department of Biology, Taiyuan Normal University, Jinzhong 030619, China)

  • Ting Liu

    (Department of Biology, Taiyuan Normal University, Jinzhong 030619, China)

  • Xinru Bai

    (Department of Biology, Taiyuan Normal University, Jinzhong 030619, China)

  • Haibin Liang

    (Institute of Geographical Science, Taiyuan Normal University, Jinzhong 030619, China)

Abstract

Heavy metals in soil are a potential threat to ecosystems and human well−being. Understanding the characteristics of soil heavy metal pollution and the prediction of ecological risk are crucial for regional eco−environment and agricultural development, especially for irrigation areas. In this study, the Xiaohe River Irrigation Area in the Loess Plateau was taken as the study area, and the concentration, as well as their accumulation degree and ecological risk and distribution of soil heavy metals, were explored based on the geo−accumulation index ( Igeo ) and Hakanson potential ecological risk index methods. The results showed that the concentrations of soil heavy metals were all lower than the second grade Environmental Quality Standard for Soils of China. However, the average concentrations of Cu, Hg, Cd, Pb, Zn, Ni and As were higher than the above−mentioned standard. Compared with the soil background values of Shanxi Province, eight heavy metals of all samples presented different accumulation degrees, with the highest accumulation degree in Hg, followed by Cd, and the values were 11.3 and 4.0 times more than the background value, respectively. Spatially, the distribution of soil heavy metals in the Xiaohe River irrigation area was quite different, generating diverse pollution patterns with significant regional differences and complex transportation routes. The content of soil heavy metals in the Xiaohe River irrigation area was highly affected by land use types. The pollution degree varied with the distance to an urban area, declining from the urban area to suburban farmland, and the outer suburban farmland. Among these heavy metals, Hg and Cd were the principal contamination elements, and transportation, service industry and agricultural activities were the main potential contamination sources. The potential ecological risk of soil heavy metal positioned as follows: Hg > Cd > Pb > Zn > Cu > As > Ni > Cr. As indicated by the Hakanson potential ecological risk index strategies, except for the Wangwu examining site, the other six sampling sites experienced extremely strong risks, and as a whole, the entire study region was in a condition of incredibly impressive perils. Consequently, these results suggest that improving soil environmental investigation and assessment, setting up soil heavy metal contamination prevention and control innovation framework and reinforcing contamination source control are effective approaches for soil heavy metal contamination anticipation and control in irrigated areas of the Loess Plateau.

Suggested Citation

  • Zhilong Meng & Ting Liu & Xinru Bai & Haibin Liang, 2022. "Characteristics and Assessment of Soil Heavy Metals Pollution in the Xiaohe River Irrigation Area of the Loess Plateau, China," Sustainability, MDPI, vol. 14(11), pages 1-15, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:11:p:6479-:d:823971
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/11/6479/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/11/6479/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xinchuang Wang & Wenkai Liu & Hebing Zhang & Fenglian Lu, 2022. "Spatiotemporal Differentiation Characteristics of Land Ecological Quality and Its Obstacle Factors in the Typical Compound Area of Mine Agriculture Urban," Sustainability, MDPI, vol. 14(16), pages 1-27, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:11:p:6479-:d:823971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.