IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i10p6082-d817409.html
   My bibliography  Save this article

Sustainable Network by Enhancing Attribute-Based Selection Mechanism Using Lagrange Interpolation

Author

Listed:
  • Chetna Monga

    (Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India)

  • Deepali Gupta

    (Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India)

  • Devendra Prasad

    (Department of Computer Science and Engineering, Panipat Institute of Engineering & Technology (PIET), Samalkha, Panipat 132102, Haryana, India)

  • Sapna Juneja

    (Department of Computer Science, KIET Group of Institutions, Delhi NCR, Ghaziabad 201206, Uttar Pradesh, India)

  • Ghulam Muhammad

    (Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh 11543, Saudi Arabia)

  • Zulfiqar Ali

    (School of Computer Science and Electronic Engineering, University of Essex, Colchester CO4 3SQ, UK)

Abstract

The security framework in Ad-hoc Networks (ANET) continues to attract the attention of researchers, although significant work has been accomplished already. Researchers in the last couple of years have shown quite an improvement in Identity Dependent Cryptography (IDC). Security in ANET is hard to attain due to the vulnerability of links (Wireless). IDC encompasses Polynomial Interpolations (PI) such as Lagrange, curve-fitting, and spline to provide security by implementing Integrated Key Management (IKM). The PI structure trusts all the available nodes in the network and randomly picks nodes for the security key generation. This paper presents a solution to the trust issues raised in Lagrange’s-PI (LI) utilizing an artificial neural network and attribute-based tree structure. The proposed structure not only improves the trust factor but also enhances the accuracy measures of LI to provide a sustainable network system. Throughput, PDR, noise, and latency have been increased by 47%, 50%, 34%, and 30%, respectively, by using LI and incorporating the aforementioned techniques.

Suggested Citation

  • Chetna Monga & Deepali Gupta & Devendra Prasad & Sapna Juneja & Ghulam Muhammad & Zulfiqar Ali, 2022. "Sustainable Network by Enhancing Attribute-Based Selection Mechanism Using Lagrange Interpolation," Sustainability, MDPI, vol. 14(10), pages 1-15, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:6082-:d:817409
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/10/6082/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/10/6082/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kamran Shaukat & Suhuai Luo & Vijay Varadharajan & Ibrahim A. Hameed & Shan Chen & Dongxi Liu & Jiaming Li, 2020. "Performance Comparison and Current Challenges of Using Machine Learning Techniques in Cybersecurity," Energies, MDPI, vol. 13(10), pages 1-27, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mudita Uppal & Deepali Gupta & Sapna Juneja & Adel Sulaiman & Khairan Rajab & Adel Rajab & M. A. Elmagzoub & Asadullah Shaikh, 2022. "Cloud-Based Fault Prediction for Real-Time Monitoring of Sensor Data in Hospital Environment Using Machine Learning," Sustainability, MDPI, vol. 14(18), pages 1-19, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fatima Rafiq & Mazhar Javed Awan & Awais Yasin & Haitham Nobanee & Azlan Mohd Zain & Saeed Ali Bahaj, 2022. "Privacy Prevention of Big Data Applications: A Systematic Literature Review," SAGE Open, , vol. 12(2), pages 21582440221, May.
    2. Hail Jung & Jinsu Jeon & Dahui Choi & Jung-Ywn Park, 2021. "Application of Machine Learning Techniques in Injection Molding Quality Prediction: Implications on Sustainable Manufacturing Industry," Sustainability, MDPI, vol. 13(8), pages 1-16, April.
    3. Frank Cremer & Barry Sheehan & Michael Fortmann & Arash N. Kia & Martin Mullins & Finbarr Murphy & Stefan Materne, 2022. "Cyber risk and cybersecurity: a systematic review of data availability," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 47(3), pages 698-736, July.
    4. Wojciech Szczepanik & Marcin Niemiec, 2022. "Heuristic Intrusion Detection Based on Traffic Flow Statistical Analysis," Energies, MDPI, vol. 15(11), pages 1-19, May.
    5. Feng Wu & Wanqiang Xu & Chaoran Lin & Yanwei Zhang, 2022. "Knowledge Trajectories on Public Crisis Management Research from Massive Literature Text Using Topic-Clustered Evolution Extraction," Mathematics, MDPI, vol. 10(12), pages 1-18, June.
    6. Ahmed Abdu & Zhengjun Zhai & Redhwan Algabri & Hakim A. Abdo & Kotiba Hamad & Mugahed A. Al-antari, 2022. "Deep Learning-Based Software Defect Prediction via Semantic Key Features of Source Code—Systematic Survey," Mathematics, MDPI, vol. 10(17), pages 1-26, August.
    7. Pengyi Liao & Jun Yan & Jean Michel Sellier & Yongxuan Zhang, 2022. "TADA: A Transferable Domain-Adversarial Training for Smart Grid Intrusion Detection Based on Ensemble Divergence Metrics and Spatiotemporal Features," Energies, MDPI, vol. 15(23), pages 1-18, November.
    8. Nasir, Nida & Kansal, Afreen & Alshaltone, Omar & Barneih, Feras & Shanableh, Abdallah & Al-Shabi, Mohammad & Al Shammaa, Ahmed, 2023. "Deep learning detection of types of water-bodies using optical variables and ensembling," LSE Research Online Documents on Economics 118724, London School of Economics and Political Science, LSE Library.
    9. Yuan Wang & Liping Yang & Jun Wu & Zisheng Song & Li Shi, 2022. "Mining Campus Big Data: Prediction of Career Choice Using Interpretable Machine Learning Method," Mathematics, MDPI, vol. 10(8), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:6082-:d:817409. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.