IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i10p6078-d817351.html
   My bibliography  Save this article

Mapping the Spatial Heterogeneity of Anthropogenic Soil Nitrogen Net Replenishment Based on Soil Loss: A Coastal Case in the Yellow River Delta, China

Author

Listed:
  • Youxiao Wang

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Chong Huang

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    These authors contributed equally to this work.)

  • Gaohuan Liu

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China)

  • Zhonghe Zhao

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China
    These authors contributed equally to this work.)

  • He Li

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

  • Qingsheng Liu

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
    University of Chinese Academy of Sciences, Beijing 100049, China)

Abstract

To explore the spatial heterogeneity of nitrogen supply from human activities to soil in coastal areas, we established a soil nitrogen net replenishment index (A-SNNRI). We applied the Revised Universal Soil Loss Equation (RUSLE) model for soil loss risk calculation and geostatistical analysis for process simulation. A case study in the Yellow River Delta (YRD) showed that the A-SNNRI worked well. During the summer crop-growing season, population and land use presented significant influences on the soil total nitrogen (STN) status. Urban villages and arable land both had the largest summary STN and variety. There was a negative correlation between STN change and soil loss. The east coast held both the largest A-SNNRIs and soil loss risks. There were significant positive correlations between A-SNNRIs and population and GDP. Therefore, to control and reduce soil-source nitrogen exports in the YRD, we need to reduce nitrogen emissions from urban villages, agriculture, industry, and aquaculture and determine the main risk locations along the east coast and in the main city.

Suggested Citation

  • Youxiao Wang & Chong Huang & Gaohuan Liu & Zhonghe Zhao & He Li & Qingsheng Liu, 2022. "Mapping the Spatial Heterogeneity of Anthropogenic Soil Nitrogen Net Replenishment Based on Soil Loss: A Coastal Case in the Yellow River Delta, China," Sustainability, MDPI, vol. 14(10), pages 1-18, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:6078-:d:817351
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/10/6078/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/10/6078/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. L. Zhang & Ke Z. Bai & Man J. Wang & R. Karthikeyan, 2016. "Basin-scale spatial soil erosion variability: Pingshuo opencast mine site in Shanxi Province, Loess Plateau of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 1213-1230, January.
    2. L. Zhang & Ke Bai & Man Wang & R. Karthikeyan, 2016. "Basin-scale spatial soil erosion variability: Pingshuo opencast mine site in Shanxi Province, Loess Plateau of China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 80(2), pages 1213-1230, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinzhu Jiu & Hongjuan Wu & Sen Li, 2019. "The Implication of Land-Use/Land-Cover Change for the Declining Soil Erosion Risk in the Three Gorges Reservoir Region, China," IJERPH, MDPI, vol. 16(10), pages 1-16, May.
    2. Yanyuan Zhang & Cong Xu & Min Xia, 2021. "Can Land Consolidation Reduce the Soil Erosion of Agricultural Land in Hilly Areas? Evidence from Lishui District, Nanjing City," Land, MDPI, vol. 10(5), pages 1-14, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:6078-:d:817351. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.