IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i10p6032-d816665.html
   My bibliography  Save this article

Risk Levels Classification of Near-Crashes in Naturalistic Driving Data

Author

Listed:
  • Hasan A. H. Naji

    (School of Digital Media, Nanyang Institute of Technology, Chang Jiang Road No 80, Nanyang 473004, China)

  • Qingji Xue

    (School of Digital Media, Nanyang Institute of Technology, Chang Jiang Road No 80, Nanyang 473004, China)

  • Nengchao Lyu

    (Intelligent Transport Systems Research Center, Wuhan University of Technology, Wuhan 430063, China)

  • Xindong Duan

    (School of Digital Media, Nanyang Institute of Technology, Chang Jiang Road No 80, Nanyang 473004, China)

  • Tianfeng Li

    (School of Digital Media, Nanyang Institute of Technology, Chang Jiang Road No 80, Nanyang 473004, China)

Abstract

Identifying dangerous events from driving behavior data has become a vital challenge in intelligent transportation systems. In this study, we compared machine and deep learning-based methods for classifying the risk levels of near-crashes. A dataset was built for the study by considering variables related to naturalistic driving, temporal data, participants, and road geometry, among others. Hierarchical clustering was applied to categorize the near-crashes into several risk levels based on high-risk driving variables. The adaptive lasso variable model was adopted to reduce factors and select significant driving risk factors. In addition, several machine and deep learning models were used to compare near-crash classification performance by training the models and examining the model with testing data. The results showed that the deep learning models outperformed the machine learning and statistical models in terms of classification performance. The LSTM model achieved the highest performance in terms of all evaluation metrics compared with the state-of-the-art models (accuracy = 96%, recall = 0.93, precision = 0.88, and F1-measure = 0.91). The LSTM model can improve the classification accuracy and prediction of most near-crash events and reduce false near-crash classification. The finding of this study can benefit transportation safety in predicting and classifying driving risk. It can provide useful suggestions for reducing the incidence of critical events and forward road crashes.

Suggested Citation

  • Hasan A. H. Naji & Qingji Xue & Nengchao Lyu & Xindong Duan & Tianfeng Li, 2022. "Risk Levels Classification of Near-Crashes in Naturalistic Driving Data," Sustainability, MDPI, vol. 14(10), pages 1-21, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:6032-:d:816665
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/10/6032/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/10/6032/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hasan. A. H. Naji & Qingji Xue & Nengchao Lyu & Chaozhong Wu & Ke Zheng, 2018. "Evaluating the Driving Risk of Near-Crash Events Using a Mixed-Ordered Logit Model," Sustainability, MDPI, vol. 10(8), pages 1-20, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lili Zheng & Yanlin Zhang & Tongqiang Ding & Fanyun Meng & Yanlin Li & Shiyu Cao, 2022. "Classification of Driver Distraction Risk Levels: Based on Driver’s Gaze and Secondary Driving Tasks," Mathematics, MDPI, vol. 10(24), pages 1-23, December.
    2. Shenjun Yao & Jinzi Wang & Lei Fang & Jianping Wu, 2018. "Identification of Vehicle-Pedestrian Collision Hotspots at the Micro-Level Using Network Kernel Density Estimation and Random Forests: A Case Study in Shanghai, China," Sustainability, MDPI, vol. 10(12), pages 1-11, December.
    3. Thanapong Champahom & Sajjakaj Jomnonkwao & Chinnakrit Banyong & Watanya Nambulee & Ampol Karoonsoontawong & Vatanavongs Ratanavaraha, 2021. "Analysis of Crash Frequency and Crash Severity in Thailand: Hierarchical Structure Models Approach," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    4. S. Roderick Zhang & Bilal Farooq, 2022. "Interpretable and Actionable Vehicular Greenhouse Gas Emission Prediction at Road link-level," Papers 2206.09073, arXiv.org.
    5. Younshik Chung & Minsu Won, 2018. "A Novel Framework for Sustainable Traffic Safety Programs Using the Public as Sensors of Hazardous Road Information," Sustainability, MDPI, vol. 10(11), pages 1-16, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:6032-:d:816665. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.