IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i10p5862-d813893.html
   My bibliography  Save this article

A Novel Z Profile of Pultruded Glass-Fibre-Reinforced Polymer Beams for Purlins

Author

Listed:
  • Djoko Setyanto

    (Mechanical Engineering Department, Faculty of Engineering, Atma Jaya Catholic University of Indonesia, Jakarta 12930, Indonesia)

  • Yohanes Adeatma Antonio

    (Mechanical Engineering Department, Faculty of Engineering, Atma Jaya Catholic University of Indonesia, Jakarta 12930, Indonesia)

  • Marten Darmawan

    (Mechanical Engineering Department, Faculty of Engineering, Atma Jaya Catholic University of Indonesia, Jakarta 12930, Indonesia)

  • Ubaidillah Ubaidillah

    (Mechanical Engineering Department, Faculty of Engineering, Sebelas Maret University, Surakarta 57126, Indonesia)

Abstract

Purlins made from galvanised steel in fertiliser warehouses have often been considered less efficient, necessitating a new purlin made using corrosion-resistant material to increase building efficiency. This study was an attempt to design a nine-metre purlin from glass-fibre-reinforced polymer (GFRP) composite material for a new fertiliser warehouse in Bontang-East Kalimantan, Indonesia. The purlin design selected in this study was the Z profile of pultruded beams from GFRP composite material that met the criteria of an efficient purlin, such as corrosion resistance, compact stacking, and ability to withstand technical loads. In particular, the Z profile becomes compact when stacked, and the GFRP material used is corrosion-resistant yet affordable. The primary materials for GFRP composites consist of long yarn glass fibre bundles for reinforcement and unsaturated polyester resin (UPR) for the matrix. Material strength modelling was based on analytical and finite element approaches. The analysis shows that the most considerable normal stress of “64.41 MPa” occurred at the two fixed end supports, while the most significant deflection of “45.9 mm” occurred at the mid-span of the purlin structure. The purlin structure was considered safe, as the strength and deflection were below the threshold. Thus, the Z profile of the pultruded purlin beams built using the GFRP composite material meets the technical criteria.

Suggested Citation

  • Djoko Setyanto & Yohanes Adeatma Antonio & Marten Darmawan & Ubaidillah Ubaidillah, 2022. "A Novel Z Profile of Pultruded Glass-Fibre-Reinforced Polymer Beams for Purlins," Sustainability, MDPI, vol. 14(10), pages 1-17, May.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:5862-:d:813893
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/10/5862/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/10/5862/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amy M. Fitzgerald & Nathan Wong & Annabel V. L. Fitzgerald & David A. Jesson & Ffion Martin & Richard J. Murphy & Tim Young & Ian Hamerton & Marco L. Longana, 2022. "Life Cycle Assessment of the High Performance Discontinuous Fibre (HiPerDiF) Technology and Its Operation in Various Countries," Sustainability, MDPI, vol. 14(3), pages 1-26, February.
    2. Jonathon M. Chard & Lauren Basson & Gavin Creech & David A. Jesson & Paul A. Smith, 2019. "Shades of Green: Life Cycle Assessment of a Urethane Methacrylate/Unsaturated Polyester Resin System for Composite Materials," Sustainability, MDPI, vol. 11(4), pages 1-15, February.
    3. Jelle Joustra & Bas Flipsen & Ruud Balkenende, 2021. "Circular Design of Composite Products: A Framework Based on Insights from Literature and Industry," Sustainability, MDPI, vol. 13(13), pages 1-23, June.
    4. Amy Fitzgerald & Will Proud & Ali Kandemir & Richard J. Murphy & David A. Jesson & Richard S. Trask & Ian Hamerton & Marco L. Longana, 2021. "A Life Cycle Engineering Perspective on Biocomposites as a Solution for a Sustainable Recovery," Sustainability, MDPI, vol. 13(3), pages 1-25, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amy Fitzgerald & Will Proud & Ali Kandemir & Richard J. Murphy & David A. Jesson & Richard S. Trask & Ian Hamerton & Marco L. Longana, 2021. "A Life Cycle Engineering Perspective on Biocomposites as a Solution for a Sustainable Recovery," Sustainability, MDPI, vol. 13(3), pages 1-25, January.
    2. Jelle Joustra & Conny Bakker & Riel Bessai & Ruud Balkenende, 2022. "Circular Composites by Design: Testing a Design Method in Industry," Sustainability, MDPI, vol. 14(13), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:10:p:5862-:d:813893. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.