IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2021i1p112-d709266.html
   My bibliography  Save this article

Study on Combustion Characteristics and Thermodynamic Parameters of Thermal Degradation of Guinea Grass ( Megathyrsus maximus ) in N 2 -Pyrolytic and Oxidative Atmospheres

Author

Listed:
  • Ayokunle O. Balogun

    (Department of Mechanical Engineering, College of Engineering, Landmark University, Omu-Aran 251103, Nigeria)

  • Adekunle A. Adeleke

    (Department of Mechanical Engineering, College of Engineering, Landmark University, Omu-Aran 251103, Nigeria
    SDG-9 (Industry, Innovation, and Infrastructure) Research Group, Landmark University, Omu-Aran 251103, Nigeria)

  • Peter P. Ikubanni

    (Department of Mechanical Engineering, College of Engineering, Landmark University, Omu-Aran 251103, Nigeria
    SDG-9 (Industry, Innovation, and Infrastructure) Research Group, Landmark University, Omu-Aran 251103, Nigeria)

  • Samuel O. Adegoke

    (Department of Petroleum Engineering, Faculty of Engineering and Technology, University of Ibadan, Ibadan 200284, Nigeria)

  • Abdulbaset M. Alayat

    (Department of Forest, Rangeland and Fire Science, University of Idaho, Moscow, ID 83844-1132, USA)

  • Armando G. McDonald

    (Department of Forest, Rangeland and Fire Science, University of Idaho, Moscow, ID 83844-1132, USA)

Abstract

This study provides an extensive investigation on the kinetics, combustion characteristics, and thermodynamic parameters of the thermal degradation of guinea grass ( Megathyrsus maximus ) in N 2 -pyrolytic and oxidative atmospheres. A model-fitting technique and three different iso-conversional techniques were used to investigate the kinetics of the thermal process, after which an analysis of the combustion characteristics and thermodynamic parameters was undertaken. Prior to this, experiments on the physico-chemical characterization, thermogravimetric, and spectroscopic analyses were carried out to provide insight into the compositional structure of the guinea grass. The volatile matter, fixed carbon, and total lignin contents by mass were 73.0%, 16.1%, and 21.5%, respectively, while the higher heating value was 15.46 MJ/kg. The cellulose crystallinity index, determined by XRD, was 0.43. The conversion of the GG in air proceeded at a relatively much higher rate as the maximum mass-loss rate peak in a 20 K/min read was −23.1 and −12.3%/min for the oxidative and the pyrolytic, respectively. The kinetics investigation revealed three distinctive stages of decomposition with their corresponding values of activation energy. The average values of activation energy (FWO) at the latter stages of decomposition in the pyrolytic processes (165 kJ/mol) were higher than those in the oxidative processes (125 kJ/mol)—an indication of the distinctive phenomenon at this stage of the reaction. The Coats–Redfern kinetic model revealed that chemical reactions and diffusional models played a predominant role in the thermal decomposition process of the GG. This study showed that the thermodynamic parameters varied with the conversion ratio, and the combustion performance increased with the heating rates. The use of GG as an energy feedstock is recommended based on the findings from this work.

Suggested Citation

  • Ayokunle O. Balogun & Adekunle A. Adeleke & Peter P. Ikubanni & Samuel O. Adegoke & Abdulbaset M. Alayat & Armando G. McDonald, 2021. "Study on Combustion Characteristics and Thermodynamic Parameters of Thermal Degradation of Guinea Grass ( Megathyrsus maximus ) in N 2 -Pyrolytic and Oxidative Atmospheres," Sustainability, MDPI, vol. 14(1), pages 1-21, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2021:i:1:p:112-:d:709266
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/1/112/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/1/112/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhenghui Xu & Xiang Xiao & Ping Fang & Lyumeng Ye & Jianhang Huang & Haiwen Wu & Zijun Tang & Dongyao Chen, 2020. "Comparison of Combustion and Pyrolysis Behavior of the Peanut Shells in Air and N 2 : Kinetics, Thermodynamics and Gas Emissions," Sustainability, MDPI, vol. 12(2), pages 1-14, January.
    2. Sattar, Hamed & Muzaffar, Imran & Munir, Shahid, 2020. "Thermal and kinetic study of rice husk, corn cobs, peanut crust and Khushab coal under inert (N2) and oxidative (dry air) atmospheres," Renewable Energy, Elsevier, vol. 149(C), pages 794-805.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bong, Jang Tyng & Loy, Adrian Chun Minh & Chin, Bridgid Lai Fui & Lam, Man Kee & Tang, Daniel Kuok Ho & Lim, Huei Yeong & Chai, Yee Ho & Yusup, Suzana, 2020. "Artificial neural network approach for co-pyrolysis of Chlorella vulgaris and peanut shell binary mixtures using microalgae ash catalyst," Energy, Elsevier, vol. 207(C).
    2. Lingna Zhong & Juan Zhang & Yanming Ding, 2020. "Energy Utilization of Algae Biomass Waste Enteromorpha Resulting in Green Tide in China: Pyrolysis Kinetic Parameters Estimation Based on Shuffled Complex Evolution," Sustainability, MDPI, vol. 12(5), pages 1-10, March.
    3. Budzeń, Małgorzata & Zając, Grzegorz & Sujak, Agnieszka & Szyszlak-Bargłowicz, Joanna, 2021. "Energetic and thermal characteristics of Lavatera thuringiaca L. biomass of different age produced from He–Ne laser light stimulated seeds," Renewable Energy, Elsevier, vol. 178(C), pages 520-531.
    4. Cao, Yuhao & Liu, Yanxing & Li, Zhengyuan & Zong, Peiying & Hou, Jiachen & Zhang, Qiyan & Gou, Xiang, 2022. "Synergistic effect, kinetics, and pollutant emission characteristics of co-combustion of polymer-containing oily sludge and cornstalk using TGA and fixed-bed reactor," Renewable Energy, Elsevier, vol. 185(C), pages 748-758.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2021:i:1:p:112-:d:709266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.