IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i9p5243-d550316.html
   My bibliography  Save this article

Design and Analysis of a High-Gain Step-Up/Down Modular DC–DC Converter with Continuous Input Current and Decreased Voltage Stress on Power Switches and Switched-Capacitors

Author

Listed:
  • Maysam Abbasi

    (School of Electrical and Data Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia)

  • Ehsan Abbasi

    (Department of Electrical Engineering, University of Tabriz, Tabriz 5166616471, Iran)

  • Li Li

    (School of Electrical and Data Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia)

  • Behrouz Tousi

    (Department of Electrical Engineering, Engineering Faculty, Urmia University, Urmia 57153, Iran)

Abstract

Due to concerns, such as global warming and depletion of fossil fuels, countries are forced to integrate energy storage devices (ESSs) and renewable energy sources (RESs), such as photovoltaic (PV) systems, wind turbines and fuel cells, into their power networks. Here, a new high gain DC–DC converter with step-up/down ability is proposed for modern applications. Since this converter provides high variable voltage gain, it can be employed for output voltage regulation purposes in RESs such as solar panels. Additionally, this converter provides a remarkable reduction in voltage stress on the switched capacitors and power switches. Due to its modular structure obtained by employing switched-capacitors (SCs), it is possible for this topology to gain a very high voltage conversion ratio using low duty-cycles produced by a simple and straightforward control system. To be specific, the more the number of SC cells increase, the more the output voltage increases. The proposed converter has a continuous input current allowing to extract the maximum power from RESs like PV panels. It should be noted that the application of this converter is not limited to the aforementioned ones since it can be used in various applications needing high voltage gains such as generating the desired voltage level in high voltage direct current (HVDC) systems especially their transmission lines. For validating the performance of the proposed structure, comprehensive comparisons and experimental results are presented.

Suggested Citation

  • Maysam Abbasi & Ehsan Abbasi & Li Li & Behrouz Tousi, 2021. "Design and Analysis of a High-Gain Step-Up/Down Modular DC–DC Converter with Continuous Input Current and Decreased Voltage Stress on Power Switches and Switched-Capacitors," Sustainability, MDPI, vol. 13(9), pages 1-19, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:5243-:d:550316
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/9/5243/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/9/5243/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Amirhossein Rajaei & Mahdi Shahparasti & Ali Nabinejad & Mehdi Savaghebi, 2020. "A High Step-Up Partial Power Processing DC/DC T-Source Converter for UPS Application," Sustainability, MDPI, vol. 12(24), pages 1-19, December.
    2. Fahad Alsokhiry & Grain Philip Adam, 2020. "Multi-Port DC-DC and DC-AC Converters for Large-Scale Integration of Renewable Power Generation," Sustainability, MDPI, vol. 12(20), pages 1-21, October.
    3. Patricio Gaisse & Javier Muñoz & Ariel Villalón & Rodrigo Aliaga, 2020. "Improved Predictive Control for an Asymmetric Multilevel Converter for Photovoltaic Energy," Sustainability, MDPI, vol. 12(15), pages 1-22, August.
    4. Sen Song & Yihua Hu & Kai Ni & Joseph Yan & Guipeng Chen & Huiqing Wen & Xianming Ye, 2018. "Multi-Port High Voltage Gain Modular Power Converter for Offshore Wind Farms," Sustainability, MDPI, vol. 10(7), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tohid Rahimi & Md Rabiul Islam & Hossein Gholizadeh & Saeed Mahdizadeh & Ebrahim Afjei, 2021. "Design and Implementation of a High Step-Up DC-DC Converter Based on the Conventional Boost and Buck-Boost Converters with High Value of the Efficiency Suitable for Renewable Application," Sustainability, MDPI, vol. 13(19), pages 1-23, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feilong Yi & Faqiang Wang, 2023. "Review of Voltage-Bucking/Boosting Techniques, Topologies, and Applications," Energies, MDPI, vol. 16(2), pages 1-24, January.
    2. Roberto Zanasi & Davide Tebaldi, 2021. "Modeling Control and Robustness Assessment of Multilevel Flying-Capacitor Converters," Energies, MDPI, vol. 14(7), pages 1-40, March.
    3. Stefano Bifaretti & Vincenzo Bonaiuto & Sabino Pipolo & Cristina Terlizzi & Pericle Zanchetta & Francesco Gallinelli & Silvio Alessandroni, 2021. "Power Flow Management by Active Nodes: A Case Study in Real Operating Conditions," Energies, MDPI, vol. 14(15), pages 1-16, July.
    4. Sen Song & Wei Li & Kai Ni & Hui Xu & Yihua Hu & Jikai Si, 2018. "Modular Multi-Port Ultra-High Power Level Power Converter Integrated with Energy Storage for High Voltage Direct Current (HVDC) Transmission," Energies, MDPI, vol. 11(10), pages 1-17, October.
    5. Humberto Vidal & Marco Rivera & Patrick Wheeler & Nicolás Vicencio, 2020. "The Analysis Performance of a Grid-Connected 8.2 kWp Photovoltaic System in the Patagonia Region," Sustainability, MDPI, vol. 12(21), pages 1-16, November.
    6. Ignacio Torres & Javier Muñoz & Diego Rojas & Eduardo E. Espinosa, 2022. "Selective Harmonic Elimination Technique for a 27-Level Asymmetric Multilevel Converter," Energies, MDPI, vol. 15(10), pages 1-17, May.
    7. Tohid Rahimi & Md Rabiul Islam & Hossein Gholizadeh & Saeed Mahdizadeh & Ebrahim Afjei, 2021. "Design and Implementation of a High Step-Up DC-DC Converter Based on the Conventional Boost and Buck-Boost Converters with High Value of the Efficiency Suitable for Renewable Application," Sustainability, MDPI, vol. 13(19), pages 1-23, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:5243-:d:550316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.