IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i9p5087-d547578.html
   My bibliography  Save this article

Evaluation of the Shear Strength Behavior of TDA Mixed with Fine and Coarse Aggregates for Backfilling around Buried Structures

Author

Listed:
  • Hany El Naggar

    (Department of Civil and Resource Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada)

  • Ali Iranikhah

    (Department of Civil and Resource Engineering, Dalhousie University, Halifax, NS B3H 4R2, Canada)

Abstract

Although some discarded tires are reused in various applications, a considerable number end up in landfills, where they pose diverse environmental problems. Waste tires that are shredded to produce tire-derived aggregates (TDA) can be reused in geotechnical engineering applications. Many studies have already been conducted to examine the behavior of pure TDA and soil-TDA mixtures. However, few studies have investigated the behavior of larger TDA particles, 20 to 75 mm in size, mixed with various types of soil at percentages ranging from 0% to 100%. In this study, TDA was mixed with gravelly, sandy, and clayey soils to determine the optimum soil-TDA mixtures for each soil type. A large-scale direct shear box (305 mm × 305 mm × 220 mm) was used, and the mixtures were examined with a series of direct shear tests at confining pressures of 50.1, 98.8, and 196.4 kPa. The test results indicated that the addition of TDA to the considered soils significantly reduces the dry unit weight, making the mixtures attractive for applications requiring lightweight fill materials. It was found that adding TDA to gravel decreases the shear resistance for all considered TDA contents. On the contrary, adding up to 10% TDA by weight to the sandy or clayey soils was found to increase the shear resistance of the mixtures. Adding up to 10% TDA by weight to the clayey soil also sharply increased the angle of internal friction from 18.8° to 32.3°. Moreover, it was also found that the addition of 25% TDA by weight to the gravelly or sandy soils can reduce the lateral earth pressure on buried structures by up to 20%. In comparison, adding 10% TDA to clay resulted in a 36% reduction in the lateral earth pressure.

Suggested Citation

  • Hany El Naggar & Ali Iranikhah, 2021. "Evaluation of the Shear Strength Behavior of TDA Mixed with Fine and Coarse Aggregates for Backfilling around Buried Structures," Sustainability, MDPI, vol. 13(9), pages 1-25, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:5087-:d:547578
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/9/5087/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/9/5087/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ennio M. Palmeira & Gregório L. S. Araújo & Eder C. G. Santos, 2021. "Sustainable Solutions with Geosynthetics and Alternative Construction Materials—A Review," Sustainability, MDPI, vol. 13(22), pages 1-29, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:5087-:d:547578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.