IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i9p4846-d543500.html
   My bibliography  Save this article

A Causal Network-Based Risk Matrix Model Applicable to Shield TBM Tunneling Projects

Author

Listed:
  • Heeyoung Chung

    (Technology Research Team, Incheon International Airport Corporation, Incheon 22382, Korea)

  • Jeongjun Park

    (Advanced Infrastructure Research Team, Korea Railroad Research Institute, Uiwang 16105, Korea)

  • Byung-Kyu Kim

    (Advanced Infrastructure Research Team, Korea Railroad Research Institute, Uiwang 16105, Korea)

  • Kibeom Kwon

    (School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, Korea)

  • In-Mo Lee

    (School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, Korea)

  • Hangseok Choi

    (School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, Korea)

Abstract

The present study compares and analyzes three risk analysis models that are applicable to shield tunnel boring machine (TBM) tunneling, and thus proposes an improved risk matrix model based on the causal networks applicable to sustainable tunnel projects. The advantages and disadvantages of three risk analysis models are compared, and causal networks are structured by analyzing the causal relationship between risk factors and risk events. Based on the comparison and analysis results, the causal network-based risk matrix model (CN-Matrix model), which complements the disadvantages and exploits the advantages of the three existing models, is proposed in this paper. Furthermore, this study suggests a means of modifying the weighting scores in the estimation of the risk score, which permits the CN-Matrix model to determine the risk level more reasonably. Thus, the improved CN-Matrix model is more reliable and robust compared to the three existing models.

Suggested Citation

  • Heeyoung Chung & Jeongjun Park & Byung-Kyu Kim & Kibeom Kwon & In-Mo Lee & Hangseok Choi, 2021. "A Causal Network-Based Risk Matrix Model Applicable to Shield TBM Tunneling Projects," Sustainability, MDPI, vol. 13(9), pages 1-23, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:4846-:d:543500
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/9/4846/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/9/4846/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jianhua Cheng & Xiaolong Yang & Hui Wang & Hujun Li & Xuan Lin & Yapeng Guo, 2022. "Evaluation of the Emergency Capability of Subway Shield Construction Based on Cloud Model," Sustainability, MDPI, vol. 14(20), pages 1-23, October.
    2. Changjian Chen & Wei Zou & Ping Geng & Wenqi Gu & Feiyun Yuan & Chuan He, 2023. "Study on Seismic Damage Risk Assessment of Mountain Tunnel Based on the Extension Theory," Sustainability, MDPI, vol. 15(6), pages 1-18, March.
    3. Kibeom Kwon & Minkyu Kang & Dongku Kim & Hangseok Choi, 2023. "Prioritization of Hazardous Zones Using an Advanced Risk Management Model Combining the Analytic Hierarchy Process and Fuzzy Set Theory," Sustainability, MDPI, vol. 15(15), pages 1-15, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:4846-:d:543500. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.