IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i9p4835-d543346.html
   My bibliography  Save this article

A Proposed Theoretical Approach for the Estimation of Seismic Structural Vulnerability of Wastewater Treatment Plants

Author

Listed:
  • Ploutarchos N. Kerpelis

    (Department of Civil Engineering, School of Engineering, Ancient Olive Grove Campus, University of West Attica, 250 Thivon Str., GR-12244 Egaleo, Greece
    Department of Financial and Management Engineering, School of Engineering, University of Aegean, 41 Kountourioti Str., GR-82132 Chios, Greece)

  • Spyridon K. Golfinopoulos

    (Department of Financial and Management Engineering, School of Engineering, University of Aegean, 41 Kountourioti Str., GR-82132 Chios, Greece)

  • Dimitrios E. Alexakis

    (Department of Civil Engineering, School of Engineering, Ancient Olive Grove Campus, University of West Attica, 250 Thivon Str., GR-12244 Egaleo, Greece)

Abstract

The assessment of seismic vulnerability is critical for lifelines such as wastewater treatment plants (WTPs) because failures may result in environmental degradation, deterioration of water quality and human diseases development. The main scope of this research is the testing and application of a rapid, simple methodology for assessing the seismic structural vulnerability (SSV) of WTPs (according to the qualitative method Rapid Visual Screening), using structural variables as indices of these infrastructures. An original new method involving the assessment of the SSV of thirteen steps (four for a sample set of WTPs and nine for an individual one) is introduced following systematic literature retrieval. The analysis highlights twenty one factors that may determine the SSV of WTPs: three factors involving general characteristics, five factors involving seismicity and geotechnical data, six factors involving technical data (including structural data) and seven additional factors about WTPs’ materials (concrete and the steel reinforcement of concrete frames). The structural data is analyzed to six additional factors. The implementation of the proposed methodology constitutes a simple, rapid methodological approach for assessing the SSV of WTPs using unique factors that were pinpointed and identified for the first time in this study.

Suggested Citation

  • Ploutarchos N. Kerpelis & Spyridon K. Golfinopoulos & Dimitrios E. Alexakis, 2021. "A Proposed Theoretical Approach for the Estimation of Seismic Structural Vulnerability of Wastewater Treatment Plants," Sustainability, MDPI, vol. 13(9), pages 1-18, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:4835-:d:543346
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/9/4835/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/9/4835/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmad Mohamad El-Maissi & Sotirios A. Argyroudis & Fadzli Mohamed Nazri, 2020. "Seismic Vulnerability Assessment Methodologies for Roadway Assets and Networks: A State-of-the-Art Review," Sustainability, MDPI, vol. 13(1), pages 1-31, December.
    2. Andrea Guerrini & Giulia Romano & Simone Ferretti & Donatella Fibbi & Daniele Daddi, 2016. "A Performance Measurement Tool Leading Wastewater Treatment Plants toward Economic Efficiency and Sustainability," Sustainability, MDPI, vol. 8(12), pages 1-14, November.
    3. Rashidi, Hamidreza & GhaffarianHoseini, Ali & GhaffarianHoseini, Amirhosein & Nik Sulaiman, Nik Meriam & Tookey, John & Hashim, Nur Awanis, 2015. "Application of wastewater treatment in sustainable design of green built environments: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 845-856.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hariklia D. Skilodimou & George D. Bathrellos, 2021. "Natural and Technological Hazards in Urban Areas: Assessment, Planning and Solutions," Sustainability, MDPI, vol. 13(15), pages 1-5, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Armando Aguilar-Meléndez & Lluis G. Pujades & Alex H. Barbat & Marisol Monterrubio-Velasco & Josep Puente & Nieves Lantada, 2022. "Comparative analysis of a new assessment of the seismic risk of residential buildings of two districts of Barcelona," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 110(3), pages 1649-1691, February.
    2. Hadi Sarvari & Daniel W. M. Chan & Behrouz Ashrafi & Timothy O. Olawumi & Nerija Banaitiene, 2021. "Prioritization of Contracting Methods for Water and Wastewater Projects Using the Fuzzy Analytic Hierarchy Process Method," Energies, MDPI, vol. 14(22), pages 1-18, November.
    3. Momina Yasin & Muhammad Tauseef & Zaniab Zafar & Moazur Rahman & Ejazul Islam & Samina Iqbal & Muhammad Afzal, 2021. "Plant-Microbe Synergism in Floating Treatment Wetlands for the Enhanced Removal of Sodium Dodecyl Sulphate from Water," Sustainability, MDPI, vol. 13(5), pages 1-11, March.
    4. Philipp Kehrein & Mark van Loosdrecht & Patricia Osseweijer & John Posada & Jo Dewulf, 2020. "The SPPD-WRF Framework: A Novel and Holistic Methodology for Strategical Planning and Process Design of Water Resource Factories," Sustainability, MDPI, vol. 12(10), pages 1-31, May.
    5. Ágota Bányai, 2021. "Energy Consumption-Based Maintenance Policy Optimization," Energies, MDPI, vol. 14(18), pages 1-33, September.
    6. Lee, Ingyu & Hwang, Hyundong & Lee, Jungwoo & Yu, Nayoung & Yun, Jinhuck & Kim, Hyunook, 2017. "Modeling approach to evaluation of environmental impacts on river water quality: A case study with Galing River, Kuantan, Pahang, Malaysia," Ecological Modelling, Elsevier, vol. 353(C), pages 167-173.
    7. Rosa M. Llácer-Iglesias & P. Amparo López-Jiménez & Modesto Pérez-Sánchez, 2021. "Energy Self-Sufficiency Aiming for Sustainable Wastewater Systems: Are All Options Being Explored?," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
    8. Tskhai, Аleksandr, 2020. "Model for evaluating the efficiency of Russian water utilities," Utilities Policy, Elsevier, vol. 62(C).
    9. Ahmad Mohamad El-Maissi & Sotirios A. Argyroudis & Moustafa Moufid Kassem & Lee Vien Leong & Fadzli Mohamed Nazri, 2022. "An Integrated Framework for the Quantification of Road Network Seismic Vulnerability and Accessibility to Critical Services," Sustainability, MDPI, vol. 14(19), pages 1-27, September.
    10. Nurullah Bektaş & Orsolya Kegyes-Brassai, 2022. "Conventional RVS Methods for Seismic Risk Assessment for Estimating the Current Situation of Existing Buildings: A State-of-the-Art Review," Sustainability, MDPI, vol. 14(5), pages 1-40, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:4835-:d:543346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.