IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i9p4729-d541853.html
   My bibliography  Save this article

Photocatalytic Degradation of Methylene Blue Using Zinc Oxide Nanorods Grown on Activated Carbon Fibers

Author

Listed:
  • Borhan Albiss

    (Nanomaterials & Magnetic Measurements Laboratory, Physics Department, Jordan University of Science and Technology, Irbid 22110, Jordan)

  • Muna Abu-Dalo

    (Chemistry Department, Jordan University of Science and Technology, Irbid 22110, Jordan)

Abstract

In this work, the synthesis, characterization, and photocatalytic performance of zinc oxide/activated carbon fiber nanocomposites prepared by hydrothermal method were investigated. Zinc oxide nanoparticles (ZnO-NP) were deposited as seeds on porous activated carbon fiber (ACF) substrates. Then, zinc oxide nanorods (ZnO-NR) were successfully grown on the seeds and assembled on the fibers’ surface in various patterns to form ZnO-NR/ACF nanocomposites. The nanocomposites were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectrometry, UV–vis diffuse reflectance spectra (DRS), and Brunauer–Emmett–Teller (BET) surface area analysis. SEM images showed that brush-like and flower-like ZnO-NR patterns were grown uniformly on the ACF surface with sizes depending on the ZnO-NP concentration, growth time, and temperature. The FTIR spectrum confirmed the presence of the major vibration bands, especially the absorption peaks representing the vibration modes of the COOH (C = O and C = C) functional group. Adsorption and photocatalytic activities of the synthesized catalytic adsorbents were compared using methylene blue (MB) as the model pollutant under UV irradiation. ZnO-NR/ACF nanocomposites showed excellent photocatalytic activity (~99% degradation of MB in 2 h) compared with that of bare ZnO-NR and ACF. Additionally, a recycling experiment demonstrated the stability of the catalyst; the catalytic degradation ratio of ZnO-NR/ACF reached more than 90% after five successive runs and possessed strong adsorption capacity and high photocatalytic ability. The enhanced photocatalytic activities may be related to the effects of the relatively high surface area, enhanced UV-light absorption, and decrease of charge carrier recombination resulting from the synergetic adsorption–photocatalytic degradation effect of ZnO and ACF.

Suggested Citation

  • Borhan Albiss & Muna Abu-Dalo, 2021. "Photocatalytic Degradation of Methylene Blue Using Zinc Oxide Nanorods Grown on Activated Carbon Fibers," Sustainability, MDPI, vol. 13(9), pages 1-15, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:4729-:d:541853
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/9/4729/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/9/4729/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Siwei Yang & Yichao Zhuang & Yuanfang Shen & Weihang Han & Liangchen Chen & Qiang Sun & Di Wu & Hui Zheng, 2021. "Carbene Ligand-Doped Fe 2 O 3 Composite for Rapid Removal of Multiple Dyes under Sunlight," Sustainability, MDPI, vol. 13(22), pages 1-14, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:9:p:4729-:d:541853. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.