IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i8p4470-d537592.html
   My bibliography  Save this article

Considering Condensable Particulate Matter Emissions Improves the Accuracy of Air Quality Modeling for Environmental Impact Assessment

Author

Listed:
  • Doo Sung Choi

    (Department of Building Equipment System & Fire Protection Engineering, University of Chungwoon, Incheon 22100, Korea
    Both authors contributed equally to this work.)

  • Jong-Sang Youn

    (Department of Energy and Environmental Engineering, The Catholic University of Korea, Bucheon 14662, Korea
    Both authors contributed equally to this work.)

  • Im Hack Lee

    (Department of Environmental Engineering, University of Seoul, Seoul 02504, Korea)

  • Byung Jin Choi

    (Jubix, Gyeonggi-do 16419, Korea)

  • Ki-Joon Jeon

    (Department of Environmental Engineering, Inha University, Incheon 22212, Korea)

Abstract

This study examines environmental impact assessment considering filterable particulate matter (FPM) and condensable particulate matter (CPM) to improve the accuracy of the air quality model. Air pollutants and meteorological data were acquired from Korea’s national monitoring station near a residential development area in the target district and background site. Seasonal emissions of PM 2.5, including CPM, were estimated using the California puff (CALPUFF) model, based on Korea’s national emissions inventory. These results were compared with the traditional environmental impact assessment results. For the residential development area, the seasonal PM 2.5 concentration was predicted by considering FPM and CPM emissions in the target area as well as the surrounding areas. In winter and spring, air quality standards were not breached because only FPM was considered. However, when CPM was included in the analysis, the results exceeded the air quality standards. Furthermore, it was predicted that air quality standards would not be breached in summer and autumn, even when CPM is included. In other words, conducting an environmental impact assessment on air pollution including CPM affects the final environmental decision. Therefore, it is concluded that PM 2.5 should include CPM for greater accuracy of the CALPUFF model for environmental impact assessment.

Suggested Citation

  • Doo Sung Choi & Jong-Sang Youn & Im Hack Lee & Byung Jin Choi & Ki-Joon Jeon, 2021. "Considering Condensable Particulate Matter Emissions Improves the Accuracy of Air Quality Modeling for Environmental Impact Assessment," Sustainability, MDPI, vol. 13(8), pages 1-10, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4470-:d:537592
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/8/4470/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/8/4470/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yao, Q. & Li, S.-Q. & Xu, H.-W. & Zhuo, J.-K. & Song, Q., 2009. "Studies on formation and control of combustion particulate matter in China: A review," Energy, Elsevier, vol. 34(9), pages 1296-1309.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jovanović, Marina & Vučićević, Biljana & Turanjanin, Valentina & Živković, Marija & Spasojević, Vuk, 2014. "Investigation of indoor and outdoor air quality of the classrooms at a school in Serbia," Energy, Elsevier, vol. 77(C), pages 42-48.
    2. Chu, Huaqiang & Han, Weiwei & Cao, Wenjian & Gu, Mingyan & Xu, Guangju, 2019. "Effect of methane addition to ethylene on the morphology and size distribution of soot in a laminar co-flow diffusion flame," Energy, Elsevier, vol. 166(C), pages 392-400.
    3. Chung-Ling Chien, John & Lior, Noam, 2011. "Concentrating solar thermal power as a viable alternative in China's electricity supply," Energy Policy, Elsevier, vol. 39(12), pages 7622-7636.
    4. Zhu, Shujun & Hui, Jicheng & Lyu, Qinggang & Ouyang, Ziqu & Zeng, Xiongwei & Zhu, Jianguo & Liu, Jingzhang & Cao, Xiaoyang & Zhang, Xiaoyu & Ding, Hongliang & Liu, Yuhua, 2023. "Experimental study on pulverized coal swirl-opposed combustion preheated by a circulating fluidized bed. Part A. Wide-load operation and low-NOx emission characteristics," Energy, Elsevier, vol. 284(C).
    5. Bandeira Santos, Alex Álisson & Torres, Ednildo Andrade & de Paula Pereira, Pedro Afonso, 2011. "Experimental investigation of the natural gas confined flames using the OEC," Energy, Elsevier, vol. 36(3), pages 1527-1534.
    6. Huang, Zhen & Wang, Xiao-jie & Ren, Xuan, 2024. "Kinetic study of sesame stalk pyrolysis by thermogravimetric analysis," Renewable Energy, Elsevier, vol. 222(C).
    7. Qiaoqun Sun & Zhiqi Zhao & Shizhang Wang & Yu Zhang & Yaodong Da & Heming Dong & Jiwang Wen & Qian Du & Jianmin Gao, 2022. "Effects of Temperature and Chemical Speciation of Mineral Elements on PM10 Formation during Zhundong Coal Combustion," Energies, MDPI, vol. 16(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4470-:d:537592. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.