IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i8p4412-d536689.html
   My bibliography  Save this article

Stability Control of Deep Coal Roadway under the Pressure Relief Effect of Adjacent Roadway with Large Deformation: A Case Study

Author

Listed:
  • Houqiang Yang

    (Key Laboratory of Deep Coal Resource Mining, Ministry of Education of China, School of Mines, University of Mining and Technology, Xuzhou 221116, China)

  • Nong Zhang

    (Key Laboratory of Deep Coal Resource Mining, Ministry of Education of China, School of Mines, University of Mining and Technology, Xuzhou 221116, China
    Open Laboratory for Large-Scale Scientific Instruments, Jiangsu Normal University, Xuzhou 221116, China)

  • Changliang Han

    (Key Laboratory of Deep Coal Resource Mining, Ministry of Education of China, School of Mines, University of Mining and Technology, Xuzhou 221116, China)

  • Changlun Sun

    (Key Laboratory of Deep Coal Resource Mining, Ministry of Education of China, School of Mines, University of Mining and Technology, Xuzhou 221116, China)

  • Guanghui Song

    (Key Laboratory of Deep Coal Resource Mining, Ministry of Education of China, School of Mines, University of Mining and Technology, Xuzhou 221116, China)

  • Yuantian Sun

    (Key Laboratory of Deep Coal Resource Mining, Ministry of Education of China, School of Mines, University of Mining and Technology, Xuzhou 221116, China)

  • Kai Sun

    (Zhongtian Hechuang Energy Co. Ltd., Ordos 017020, China)

Abstract

High-efficiency maintenance and control of the deep coal roadway surrounding rock stability is a reliable guarantee for sustainable development of a coal mine. However, it is difficult to control the stability of a roadway that locates near a roadway with large deformation. With return air roadway 21201 (RAR 21201) in Hulusu coal mine as the research background, in situ investigation, theoretical analysis, numerical simulation, and engineering practice were carried out to study pressure relief effect on the surrounding rock after the severe deformation of the roadway. Besides, the feasibility of excavating a new roadway near this damaged one by means of pressure relief effect is also discussed. Results showed that after the strong mining roadway suffered huge loose deformation, the space inside shrank so violently that surrounding rock released high stress to a large extent, which formed certain pressure relief effect on the rock. Through excavating a new roadway near this deformed one, the new roadway could obtain a relative low stress environment with the help of the pressure relief effect, which is beneficial for maintenance and control of itself. Equal row spacing double-bearing ring support technology is proposed and carried out. Engineering practice indicates that the new excavated roadway escaped from possible separation fracture in the roof anchoring range, and the surrounding rock deformation of the new roadway is well controlled, which verifies the pressure relief effect mentioned. This paper provides a reference for scientific mining under the condition of deep buried and high stress mining in western China.

Suggested Citation

  • Houqiang Yang & Nong Zhang & Changliang Han & Changlun Sun & Guanghui Song & Yuantian Sun & Kai Sun, 2021. "Stability Control of Deep Coal Roadway under the Pressure Relief Effect of Adjacent Roadway with Large Deformation: A Case Study," Sustainability, MDPI, vol. 13(8), pages 1-14, April.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4412-:d:536689
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/8/4412/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/8/4412/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Houqiang Yang & Changliang Han & Nong Zhang & Changlun Sun & Dongjiang Pan & Minghui Dong, 2019. "Stability Control of a Goaf-Side Roadway under the Mining Disturbance of an Adjacent Coal Working Face in an Underground Mine," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    2. Zhengzheng Xie & Nong Zhang & Fanfei Meng & Changliang Han & Yanpei An & Ruojun Zhu, 2019. "Deformation Field Evolution and Failure Mechanisms of Coal–Rock Combination Based on the Digital Speckle Correlation Method," Energies, MDPI, vol. 12(13), pages 1-14, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zexin Li & Yidong Zhang & Qi Ma & Yu Zheng & Guangyuan Song & Wanzi Yan & Yu Zhang & Lei Hu, 2023. "The Floor Heave Mechanism and Control Technology of Gob-Side Entry Retaining of Soft Rock Floor," Sustainability, MDPI, vol. 15(7), pages 1-22, March.
    2. Dongdong Chen & Zhiqiang Wang & Zaisheng Jiang & Shengrong Xie & Zijian Li & Qiucheng Ye & Jingkun Zhu, 2023. "Research on J 2 Evolution Law and Control under the Condition of Internal Pressure Relief in Surrounding Rock of Deep Roadway," Sustainability, MDPI, vol. 15(13), pages 1-22, June.
    3. Junbiao Ma & Ning Jiang & Xujun Wang & Xiaodong Jia & Dehao Yao, 2021. "Numerical Study of the Strength and Characteristics of Sandstone Samples with Combined Double Hole and Double Fissure Defects," Sustainability, MDPI, vol. 13(13), pages 1-16, June.
    4. Yuxi Hao & Mingliang Li & Wen Wang & Zhizeng Zhang & Zhun Li, 2023. "Study on the Stress Distribution and Stability Control of Surrounding Rock of Reserved Roadway with Hard Roof," Sustainability, MDPI, vol. 15(19), pages 1-21, September.
    5. Yuantian Sun & Guichen Li & Junfei Zhang & Junbo Sun & Jiandong Huang & Reza Taherdangkoo, 2021. "New Insights of Grouting in Coal Mass: From Small-Scale Experiments to Microstructures," Sustainability, MDPI, vol. 13(16), pages 1-17, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhaowen Du & Shaojie Chen & Junbiao Ma & Zhongping Guo & Dawei Yin, 2020. "Gob-Side Entry Retaining Involving Bag Filling Material for Support Wall Construction," Sustainability, MDPI, vol. 12(16), pages 1-20, August.
    2. Jianhua Hu & Pingping Zeng & Dongjie Yang & Guanping Wen & Xiao Xu & Shaowei Ma & Fengwen Zhao & Rui Xiang, 2021. "Experimental Investigation on Uniaxial Compression Mechanical Behavior and Damage Evolution of Pre-Damaged Granite after Cyclic Loading," Energies, MDPI, vol. 14(19), pages 1-17, September.
    3. Houqiang Yang & Changliang Han & Nong Zhang & Yuantian Sun & Dongjiang Pan & Changlun Sun, 2020. "Long High-Performance Sustainable Bolt Technology for the Deep Coal Roadway Roof: A Case Study," Sustainability, MDPI, vol. 12(4), pages 1-14, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:8:p:4412-:d:536689. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.