IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i7p3630-d523596.html
   My bibliography  Save this article

Simulation Study on Indoor Air Distribution and Indoor Humidity Distribution of Three Ventilation Patterns Using Computational Fluid Dynamics

Author

Listed:
  • Fangyuan Zhang

    (Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu 808-0135, Japan)

  • Yuji Ryu

    (Faculty of Environmental Engineering, The University of Kitakyushu, Kitakyushu 808-0135, Japan)

Abstract

Due to recent industrial developments and the COVID-19 pandemic, people are spending more time indoors. Consequently, many researchers have focused on the indoor environment, and indoor air quality is considered more important for human health. Improving indoor air quality depends on effective ventilation and reasonable air distribution. In an air-conditioned room, the form of airflow organization affects air quality, so air distribution is an important aspect of air-conditioning system design. In this study, we used Airpak software by Fluent to perform numerical calculations on the indoor humidity calculation model and study the effects of different ventilation methods on indoor temperature and humidity distribution. The Reynolds averaged Navier–Stokes equation and the RNG (Re-Normalisation Group) k-epsilon model were used to predict the airflow pattern in a room, the effects of ventilation on the dew rate, the effects of different ventilation methods, and the effect of indoor wall condensation. The results of the simulation showed that the ventilation mode significantly affected the distribution of condensation on the indoor wall surface.

Suggested Citation

  • Fangyuan Zhang & Yuji Ryu, 2021. "Simulation Study on Indoor Air Distribution and Indoor Humidity Distribution of Three Ventilation Patterns Using Computational Fluid Dynamics," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:3630-:d:523596
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/7/3630/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/7/3630/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin He & Shunan Zhao & Guowen Xu & Xin Wu & Junlong Xie & Shanshan Cai, 2021. "Prediction and Evaluation of Dynamic Variations of the Thermal Environment in an Air-Conditioned Room Using Collaborative Simulation Method," Energies, MDPI, vol. 14(17), pages 1-19, August.
    2. Simon Li, 2023. "Review of Engineering Controls for Indoor Air Quality: A Systems Design Perspective," Sustainability, MDPI, vol. 15(19), pages 1-46, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:7:p:3630-:d:523596. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.