IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i6p3482-d521526.html
   My bibliography  Save this article

Study on the Bending and Joint Performances of Reinforced Concrete Beams Using High-Strength Rebars

Author

Listed:
  • Seoungho Cho

    (Institute of Construction Technology, Seoul National University of Science and Technology, Seoul 01811, Korea)

  • Myungkwan Lim

    (Department of Architecture Engineering, Songwon University, Gwangju 61756, Korea)

  • Changhee Lee

    (Department of Mechanical and Shipbuilding Convergence Engineering, Pukyong National University, Busan 48547, Korea)

Abstract

High-strength reinforcing bars have high yield strengths. It is possible to reduce the number of reinforcing bars placed in a building. Accordingly, as the amount of reinforcement decreases, the spacing of reinforcing bars increases, workability improves, and the construction period shortens. To evaluate the structural performance of high-strength reinforcing bars and the joint performance of high-strength threaded reinforcing bars, flexural performance tests were performed in this study on 12 beam members with the compressive strength of concrete, the yield strength of the tensile reinforcing bars, and the tensile reinforcing bar ratio as variables. The yield strengths of the tensile reinforcement and joint methods were used as variables, and joint performance tests were performed for six beam members. Based on this study, the foundation for using high-strength reinforcing bars with a design standard yield strength equal to 600 MPa was established. Accordingly, mechanical joints of high-strength threaded reinforcing bars (600 and 670 MPa) can be used. All six specimens were destroyed under more than the expected nominal strength. Lap splice caused brittle fractures because it was not reinforced in stirrup. Increases of 21% to 47% in the loads of specimens using a coupler and a lock nut were observed. Shape yield represents destruction—a section must ensure sufficient ductility after yielding. Therefore, a coupler and lock nut are effective.

Suggested Citation

  • Seoungho Cho & Myungkwan Lim & Changhee Lee, 2021. "Study on the Bending and Joint Performances of Reinforced Concrete Beams Using High-Strength Rebars," Sustainability, MDPI, vol. 13(6), pages 1-17, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3482-:d:521526
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/6/3482/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/6/3482/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kaiyue Zhao & Peng Zhang & Bing Wang & Yupeng Tian & Shanbin Xue & Yuan Cong, 2021. "Preparation of Electric- and Magnetic-Activated Water and Its Influence on the Workability and Mechanical Properties of Cement Mortar," Sustainability, MDPI, vol. 13(8), pages 1-17, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3482-:d:521526. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.