IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i6p3217-d517232.html
   My bibliography  Save this article

Performance Evaluation of Concrete Structures Using Crack Repair Methods

Author

Listed:
  • Tae-Kyun Kim

    (Advanced Composites Research Center, Korea Institute of Civil Engineering and Building Technology, 283, Goyang-daero, Ilsanseo-gu, Goyang-si 10223, Gyeonggi-do, Korea)

  • Jong-Sup Park

    (Advanced Composites Research Center, Korea Institute of Civil Engineering and Building Technology, 283, Goyang-daero, Ilsanseo-gu, Goyang-si 10223, Gyeonggi-do, Korea)

Abstract

Concrete structures deteriorate over time due to cracks induced by various physical, chemical, and environmental factors. This performance degradation not only reduces their service life but may lead to human casualties and other property damage as well. While concrete crack repair can help address this problem, the implementation of the optimal repair method is important according to the environmental conditions. In this study, epoxy, impregnating, and epoxy/impregnating methods were used to repair concrete cracks. Epoxy was used for crack injection, and a supernatant was used for surface protection. The epoxy/impregnating method was used to protect both cracked areas and surfaces. Activated cracks were induced using flexural strength tests, and the stiffness of the specimens according to the repair method was compared to examine the structural performance. In addition, after the flexural strength tests, the strength, carbonation, chloride, and freeze–thaw durability were evaluated for the concrete core specimens. The impregnating method yielded the best repair performance for strength, epoxy/impregnating method for carbonation, epoxy and epoxy/impregnating methods for chloride, and epoxy/impregnating method for freezing and thawing. The results of our study enable selection of the optimal repair method to be used in practical applications based on physical, chemical, and environmental factors.

Suggested Citation

  • Tae-Kyun Kim & Jong-Sup Park, 2021. "Performance Evaluation of Concrete Structures Using Crack Repair Methods," Sustainability, MDPI, vol. 13(6), pages 1-19, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3217-:d:517232
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/6/3217/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/6/3217/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Němeček, J. & Kruis, J. & Koudelka, T. & Krejčí, T., 2018. "Simulation of chloride migration in reinforced concrete," Applied Mathematics and Computation, Elsevier, vol. 319(C), pages 575-585.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.

      Corrections

      All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:6:p:3217-:d:517232. See general information about how to correct material in RePEc.

      If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

      If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

      If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

      For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

      Please note that corrections may take a couple of weeks to filter through the various RePEc services.

      IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.