IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i5p2900-d512554.html
   My bibliography  Save this article

Parameter Optimization and Effect Analysis of Low-Pressure Abrasive Water Jet (LPAWJ) for Paint Removal of Remanufacturing Cleaning

Author

Listed:
  • Sheng Xiong

    (Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
    National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China)

  • Xiujie Jia

    (Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
    National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China)

  • Shuangshuang Wu

    (Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
    National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China)

  • Fangyi Li

    (Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
    National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China)

  • Mingliang Ma

    (Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
    National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China)

  • Xing Wang

    (Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, School of Mechanical Engineering, Shandong University, Jinan 250061, China
    National Demonstration Center for Experimental Mechanical Engineering Education, Shandong University, Jinan 250061, China)

Abstract

As an environmentally friendly method, water jet (WJ) technology plays a significant role in the field of remanufacturing cleaning. The cleaning capacity of a WJ is severely restricted by the water pressure, while the impact force will be too large and may damage the cleaned substrate as well as cause energy waste if the pressure is too high. However, by adding abrasives, the cleaning capacity of a low-pressure water jet (LPWJ) will be considerably improved. Although abrasive water jet (AWJ) technology has been used in mechanical machining for decades, very limited research work can be found in the literature for remanufacturing cleaning. In this paper, the role of abrasives in low-pressure abrasive water jet (LPAWJ) cleaning was described. Cleaning performance with different parameters (abrasive feed rate condition, water pressure and standoff distance) in paint removal was experimentally investigated by using the Taguchi design of experiment. The experimental results indicated that the water pressure was the most dominant factor and the optimal parameter combination was the second feed rate condition, 9 MPa water pressure and 300 mm standoff distance. The influence law between the cleaning performance and various factors was explored, which can provide remanufacturers with directions in selection of the optimal parameters in the LPAWJ cleaning process. By designing contrast experiments, the results showed that the cleaning capacity of an LPAWJ is better than that of a pure LPWJ and the residual effect in terms of changes in surface roughness, residual stress and morphology is a little larger.

Suggested Citation

  • Sheng Xiong & Xiujie Jia & Shuangshuang Wu & Fangyi Li & Mingliang Ma & Xing Wang, 2021. "Parameter Optimization and Effect Analysis of Low-Pressure Abrasive Water Jet (LPAWJ) for Paint Removal of Remanufacturing Cleaning," Sustainability, MDPI, vol. 13(5), pages 1-13, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2900-:d:512554
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/5/2900/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/5/2900/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wei Meng & Xiufen Zhang, 2020. "Optimization of Remanufacturing Disassembly Line Balance Considering Multiple Failures and Material Hazards," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    2. Fiona Charnley & Divya Tiwari & Windo Hutabarat & Mariale Moreno & Okechukwu Okorie & Ashutosh Tiwari, 2019. "Simulation to Enable a Data-Driven Circular Economy," Sustainability, MDPI, vol. 11(12), pages 1-16, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gianmarco Bressanelli & Federico Adrodegari & Daniela C. A. Pigosso & Vinit Parida, 2022. "Towards the Smart Circular Economy Paradigm: A Definition, Conceptualization, and Research Agenda," Sustainability, MDPI, vol. 14(9), pages 1-20, April.
    2. Özden Tozanlı & Elif Kongar & Surendra M. Gupta, 2020. "Evaluation of Waste Electronic Product Trade-in Strategies in Predictive Twin Disassembly Systems in the Era of Blockchain," Sustainability, MDPI, vol. 12(13), pages 1-33, July.
    3. Fabio De Felice & Antonella Petrillo, 2021. "Green Transition: The Frontier of the Digicircular Economy Evidenced from a Systematic Literature Review," Sustainability, MDPI, vol. 13(19), pages 1-26, October.
    4. Jesko Schulte & Carolina Villamil & Sophie I. Hallstedt, 2020. "Strategic Sustainability Risk Management in Product Development Companies: Key Aspects and Conceptual Approach," Sustainability, MDPI, vol. 12(24), pages 1-20, December.
    5. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
    6. Divya Tiwari & Jill Miscandlon & Ashutosh Tiwari & Geraint W. Jewell, 2021. "A Review of Circular Economy Research for Electric Motors and the Role of Industry 4.0 Technologies," Sustainability, MDPI, vol. 13(17), pages 1-19, August.
    7. Chauhan, Chetna & Parida, Vinit & Dhir, Amandeep, 2022. "Linking circular economy and digitalisation technologies: A systematic literature review of past achievements and future promises," Technological Forecasting and Social Change, Elsevier, vol. 177(C).
    8. Ramesh Subramoniam & Erik Sundin & Suresh Subramoniam & Donald Huisingh, 2021. "Riding the Digital Product Life Cycle Waves towards a Circular Economy," Sustainability, MDPI, vol. 13(16), pages 1-23, August.
    9. Ahmed Zainul Abideen & Jaafar Pyeman & Veera Pandiyan Kaliani Sundram & Ming-Lang Tseng & Shahryar Sorooshian, 2021. "Leveraging Capabilities of Technology into a Circular Supply Chain to Build Circular Business Models: A State-of-the-Art Systematic Review," Sustainability, MDPI, vol. 13(16), pages 1-26, August.
    10. Kristoffersen, Eivind & Blomsma, Fenna & Mikalef, Patrick & Li, Jingyue, 2020. "The smart circular economy: A digital-enabled circular strategies framework for manufacturing companies," Journal of Business Research, Elsevier, vol. 120(C), pages 241-261.
    11. Junyong Liang & Shunsheng Guo & Yunfei Zhang & Wenfang Liu & Shengwen Zhou, 2021. "Energy-Efficient Optimization of Two-Sided Disassembly Line Balance Considering Parallel Operation and Uncertain Using Multiobjective Flatworm Algorithm," Sustainability, MDPI, vol. 13(6), pages 1-23, March.
    12. Feng, Yunting & Lai, Kee-hung & Zhu, Qinghua, 2022. "Green supply chain innovation: Emergence, adoption, and challenges," International Journal of Production Economics, Elsevier, vol. 248(C).
    13. Mariusz Cholewa & Luan Huynh Ba Minh, 2021. "PLM Solutions in the Process of Supporting the Implementation and Maintenance of the Circular Economy Concept in Manufacturing Companies," Sustainability, MDPI, vol. 13(19), pages 1-28, September.
    14. Zhen Liu & Jing Liu & Mohamed Osmani, 2021. "Integration of Digital Economy and Circular Economy: Current Status and Future Directions," Sustainability, MDPI, vol. 13(13), pages 1-27, June.
    15. Milena Botlíková & Josef Botlík, 2020. "Local Extremes of Selected Industry 4.0 Indicators in the European Space—Structure for Autonomous Systems," JRFM, MDPI, vol. 13(1), pages 1-37, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2900-:d:512554. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.