IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i5p2777-d510606.html
   My bibliography  Save this article

Evaluation of Provincial Carbon Neutrality Capacity of China Based on Combined Weight and Improved TOPSIS Model

Author

Listed:
  • Dongxiao Niu

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Beijing 102206, China)

  • Gengqi Wu

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Beijing 102206, China)

  • Zhengsen Ji

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Beijing 102206, China)

  • Dongyu Wang

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Beijing 102206, China)

  • Yuying Li

    (School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, China)

  • Tian Gao

    (School of Economics and Management, North China Electric Power University, Beijing 102206, China
    Beijing Key Laboratory of New Energy and Low-Carbon Development, North China Electric Power University, Beijing 102206, China)

Abstract

It will be a huge challenge for China to achieve carbon neutrality by 2060. At present, China needs to understand its own carbon neutrality status and then scientifically plan a path to achieve carbon neutrality. In order to evaluate the carbon neutrality capacity of China’s provinces, this paper firstly constructs an evaluation indicator system, which includes 20 indicators at six levels. Then, a combination of subjective and objective weighting methods, as well as an improved technique for order preference by similarity to an ideal solution (TOPSIS) model, are used to calculate evaluation results. On this basis, the reasons for their different carbon neutrality capacities are analyzed. The results show that the use of renewable energy, maintaining ecological environmental quality, and low-carbon technology are important factors affecting China’s carbon neutrality capacity, and according to the evaluation results, China’s provinces are divided into three categories. Finally, corresponding suggestions for speeding up the pace of carbon neutrality are put forward.

Suggested Citation

  • Dongxiao Niu & Gengqi Wu & Zhengsen Ji & Dongyu Wang & Yuying Li & Tian Gao, 2021. "Evaluation of Provincial Carbon Neutrality Capacity of China Based on Combined Weight and Improved TOPSIS Model," Sustainability, MDPI, vol. 13(5), pages 1-18, March.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2777-:d:510606
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/5/2777/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/5/2777/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Yue-Jun & Da, Ya-Bin, 2015. "The decomposition of energy-related carbon emission and its decoupling with economic growth in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1255-1266.
    2. Qianwen Li & Ruyin Long & Hong Chen, 2018. "Measurements and Factors That Influence the Carbon Capability of Urban Residents in China," Sustainability, MDPI, vol. 10(4), pages 1-22, April.
    3. Bin Huang & Ke Xing & Stephen Pullen & Lida Liao, 2020. "Exploring Carbon Neutral Potential in Urban Densification: A Precinct Perspective and Scenario Analysis," Sustainability, MDPI, vol. 12(12), pages 1-19, June.
    4. Gu, Bo & Zhang, Tianren & Meng, Hang & Zhang, Jinhua, 2021. "Short-term forecasting and uncertainty analysis of wind power based on long short-term memory, cloud model and non-parametric kernel density estimation," Renewable Energy, Elsevier, vol. 164(C), pages 687-708.
    5. Opricovic, Serafim & Tzeng, Gwo-Hshiung, 2004. "Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS," European Journal of Operational Research, Elsevier, vol. 156(2), pages 445-455, July.
    6. Wang, Zhaohua & Yin, Fangchao & Zhang, Yixiang & Zhang, Xian, 2012. "An empirical research on the influencing factors of regional CO2 emissions: Evidence from Beijing city, China," Applied Energy, Elsevier, vol. 100(C), pages 277-284.
    7. Wang, Qunwei & Chiu, Yung-Ho & Chiu, Ching-Ren, 2015. "Driving factors behind carbon dioxide emissions in China: A modified production-theoretical decomposition analysis," Energy Economics, Elsevier, vol. 51(C), pages 252-260.
    8. Kefeng Liu & Lizhi Yang & Ming Li, 2021. "Application of Cloud Model and Bayesian Network to Piracy Risk Assessment," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-14, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han Wang & Wenjuan Dong & Hongji Li & Ershun Du, 2023. "Investment Estimation in the Energy and Power Sector towards Carbon Neutrality Target: A Case Study of China," Sustainability, MDPI, vol. 15(5), pages 1-14, March.
    2. Ma, Shuaiyin & Huang, Yuming & Liu, Yang & Kong, Xianguang & Yin, Lei & Chen, Gaige, 2023. "Edge-cloud cooperation-driven smart and sustainable production for energy-intensive manufacturing industries," Applied Energy, Elsevier, vol. 337(C).
    3. Zhaofu Yang & Yongna Yuan & Yu Tan, 2022. "Club Convergence of Economies’ Per Capita Carbon Emissions: Evidence from Countries That Proposed Carbon Neutrality," IJERPH, MDPI, vol. 19(14), pages 1-16, July.
    4. Mohammad Mojtahedi & Riza Yosia Sunindijo & Fatma Lestari & Suparni & Oktomi Wijaya, 2021. "Developing Hospital Emergency and Disaster Management Index Using TOPSIS Method," Sustainability, MDPI, vol. 13(9), pages 1-14, May.
    5. Fangzhong Qi & Leilei Zhang & Kexiang Zhuo & Xiuyan Ma, 2022. "Early Warning for Manufacturing Supply Chain Resilience Based on Improved Grey Prediction Model," Sustainability, MDPI, vol. 14(20), pages 1-16, October.
    6. Junling Wang & Lihong Qin & Hanfang Chu, 2023. "Evaluation of Carbon Emission and Carbon Contribution Capacity Based on the Beijing–Tianjin–Hebei Region of China," Sustainability, MDPI, vol. 15(7), pages 1-26, March.
    7. Binbin Yang & Sang-Do Park, 2023. "Who Drives Carbon Neutrality in China? Text Mining and Network Analysis," Sustainability, MDPI, vol. 15(6), pages 1-24, March.
    8. Cai, Jinyang & Zheng, Huanyu & Vardanyan, Michael & Shen, Zhiyang, 2023. "Achieving carbon neutrality through green technological progress: evidence from China," Energy Policy, Elsevier, vol. 173(C).
    9. Liu, Xu & Guo, Yang & Dasgupta, Anish & He, Haoran & Xu, Donghai & Guan, Qingqing, 2022. "Algal bio-oil refinery: A review of heterogeneously catalyzed denitrogenation and demetallization reactions for renewable process," Renewable Energy, Elsevier, vol. 183(C), pages 627-650.
    10. Yunxiang Ge & Cheng Lu & Han Gao, 2023. "Constructing an Indicator System for Cultural Sustainability in Chinese Cities under the Objective of Urban Renewal and Capability Measurement," Sustainability, MDPI, vol. 15(18), pages 1-23, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Miao & Feng, Chao, 2017. "Analysis of energy-related CO2 emissions in China’s mining industry: Evidence and policy implications," Resources Policy, Elsevier, vol. 53(C), pages 77-87.
    2. Xing Zhou & Meihua Zhou & Ming Zhang, 2016. "Contrastive analyses of the influence factors of interprovincial carbon emission induced by industry energy in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 81(3), pages 1405-1433, April.
    3. Jialing Zou & Zhipeng Tang & Shuang Wu, 2019. "Divergent Leading Factors in Energy-Related CO 2 Emissions Change among Subregions of the Beijing–Tianjin–Hebei Area from 2006 to 2016: An Extended LMDI Analysis," Sustainability, MDPI, vol. 11(18), pages 1-17, September.
    4. Yang, Lin & Yang, Yuantao & Zhang, Xian & Tang, Kai, 2018. "Whether China's industrial sectors make efforts to reduce CO2 emissions from production? - A decomposed decoupling analysis," Energy, Elsevier, vol. 160(C), pages 796-809.
    5. Liobikienė, Genovaitė & Butkus, Mindaugas, 2019. "Scale, composition, and technique effects through which the economic growth, foreign direct investment, urbanization, and trade affect greenhouse gas emissions," Renewable Energy, Elsevier, vol. 132(C), pages 1310-1322.
    6. Feng, Chao & Zhang, Hua & Huang, Jian-Bai, 2017. "The approach to realizing the potential of emissions reduction in China: An implication from data envelopment analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 859-872.
    7. Wu, Rong & Wang, Jieyu & Wang, Shaojian & Feng, Kuishuang, 2021. "The drivers of declining CO2 emissions trends in developed nations using an extended STIRPAT model: A historical and prospective analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    8. Chen, B. & Li, J.S. & Zhou, S.L. & Yang, Q. & Chen, G.Q., 2018. "GHG emissions embodied in Macao's internal energy consumption and external trade: Driving forces via decomposition analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4100-4106.
    9. Zhang, Yue-Jun & Liu, Zhao & Qin, Chang-Xiong & Tan, Tai-De, 2017. "The direct and indirect CO2 rebound effect for private cars in China," Energy Policy, Elsevier, vol. 100(C), pages 149-161.
    10. Xu, Bin & Lin, Boqiang, 2015. "Carbon dioxide emissions reduction in China's transport sector: A dynamic VAR (vector autoregression) approach," Energy, Elsevier, vol. 83(C), pages 486-495.
    11. Yu, Shiwei & Zheng, Shuhong & Li, Xia, 2018. "The achievement of the carbon emissions peak in China: The role of energy consumption structure optimization," Energy Economics, Elsevier, vol. 74(C), pages 693-707.
    12. Yu, Shiwei & Zhang, Junjie & Zheng, Shuhong & Sun, Han, 2015. "Provincial carbon intensity abatement potential estimation in China: A PSO–GA-optimized multi-factor environmental learning curve method," Energy Policy, Elsevier, vol. 77(C), pages 46-55.
    13. Jianghua Liu & Mengxu Li & Yitao Ding, 2021. "Econometric analysis of the impact of the urban population size on carbon dioxide (CO2) emissions in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(12), pages 18186-18203, December.
    14. Wang, Chen & Engels, Anita & Wang, Zhaohua, 2018. "Overview of research on China's transition to low-carbon development: The role of cities, technologies, industries and the energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1350-1364.
    15. Haonan Yang & Liang Chen & Huan Huang & Panyu Tang, 2022. "Measurement and Spatial-Temporal Evolution Characteristics of Low-Carbon Cities with High-Quality Development: The Case Study of the Yangtze River Economic Belt, China," Sustainability, MDPI, vol. 14(15), pages 1-23, August.
    16. Chen, Jiandong & Xu, Chong & Cui, Lianbiao & Huang, Shuo & Song, Malin, 2019. "Driving factors of CO2 emissions and inequality characteristics in China: A combined decomposition approach," Energy Economics, Elsevier, vol. 78(C), pages 589-597.
    17. Pengyan Zhang & Jianjian He & Xin Hong & Wei Zhang & Chengzhe Qin & Bo Pang & Yanyan Li & Yu Liu, 2017. "Regional-Level Carbon Emissions Modelling and Scenario Analysis: A STIRPAT Case Study in Henan Province, China," Sustainability, MDPI, vol. 9(12), pages 1-15, December.
    18. Chen, Huadun & Du, Qianxi & Huo, Tengfei & Liu, Peiran & Cai, Weiguang & Liu, Bingsheng, 2023. "Spatiotemporal patterns and driving mechanism of carbon emissions in China's urban residential building sector," Energy, Elsevier, vol. 263(PE).
    19. Yongming Song & Jun Hu, 2017. "Vector similarity measures of hesitant fuzzy linguistic term sets and their applications," PLOS ONE, Public Library of Science, vol. 12(12), pages 1-13, December.
    20. Yi Peng, 2015. "Regional earthquake vulnerability assessment using a combination of MCDM methods," Annals of Operations Research, Springer, vol. 234(1), pages 95-110, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2777-:d:510606. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.