IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i5p2549-d506561.html
   My bibliography  Save this article

Digital Certificate Verification Scheme for Smart Grid using Fog Computing (FONICA)

Author

Listed:
  • Shahid Mahmood

    (Department of Computer Science, Bahria University, Islamabad 44000, Pakistan)

  • Moneeb Gohar

    (Department of Computer Science, Bahria University, Islamabad 44000, Pakistan)

  • Jin-Ghoo Choi

    (Department of Information and Communication Engineering, Yeungnam University, Gyongsan 38541, Korea)

  • Seok-Joo Koh

    (School of Computer Science and Engineering, Kyungpook National University, Daegu 41566, Korea)

  • Hani Alquhayz

    (Department of Computer Science and Information, College of Science in Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia)

  • Murad Khan

    (School of Computer Science and Engineering, Kyungpook National University, Daegu 41566, Korea)

Abstract

Smart Grid (SG) infrastructure is an energy network connected with computer networks for communication over the internet and intranets. The revolution of SGs has also introduced new avenues of security threats. Although Digital Certificates provide countermeasures, however, one of the issues that exist, is how to efficiently distribute certificate revocation information among Edge devices. The conventional mechanisms, including certificate revocation list (CRL) and online certificate status protocol (OCSP), are subjected to some limitations in energy efficient environments like SG infrastructure. To address the aforementioned challenges, this paper proposes a scheme incorporating the advantages and strengths of the fog computing. The fog node can be used for this purpose with much better resources closer to the edge. Keeping the resources closer to the edge strengthen the security aspect of smart grid networks. Similarly, a fog node can act as an intermediate Certification Authority (CA) (i.e., Fog Node as an Intermediate Certification Authority (FONICA)). Further, the proposed scheme has reduced storage, communication, processing overhead, and latency for certificate verification at edge devices. Furthermore, the proposed scheme reduces the attack surface, even if the attacker becomes a part of the network.

Suggested Citation

  • Shahid Mahmood & Moneeb Gohar & Jin-Ghoo Choi & Seok-Joo Koh & Hani Alquhayz & Murad Khan, 2021. "Digital Certificate Verification Scheme for Smart Grid using Fog Computing (FONICA)," Sustainability, MDPI, vol. 13(5), pages 1-19, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2549-:d:506561
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/5/2549/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/5/2549/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kimani, Kenneth & Oduol, Vitalice & Langat, Kibet, 2019. "Cyber security challenges for IoT-based smart grid networks," International Journal of Critical Infrastructure Protection, Elsevier, vol. 25(C), pages 36-49.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ryan S. Montrose & John F. Gardner & Aykut C. Satici, 2021. "Centralized and Decentralized Optimal Control of Variable Speed Heat Pumps," Energies, MDPI, vol. 14(13), pages 1-18, July.
    2. Shahid Tufail & Imtiaz Parvez & Shanzeh Batool & Arif Sarwat, 2021. "A Survey on Cybersecurity Challenges, Detection, and Mitigation Techniques for the Smart Grid," Energies, MDPI, vol. 14(18), pages 1-22, September.
    3. Vargas, Paola & Tien, Iris, 2023. "Impacts of 5G on cyber-physical risks for interdependent connected smart critical infrastructure systems," International Journal of Critical Infrastructure Protection, Elsevier, vol. 42(C).
    4. Walter Leal Filho & Peter Yang & João Henrique Paulino Pires Eustachio & Anabela Marisa Azul & Joshua C. Gellers & Agata Gielczyk & Maria Alzira Pimenta Dinis & Valerija Kozlova, 2023. "Deploying digitalisation and artificial intelligence in sustainable development research," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 4957-4988, June.
    5. Saif Hussein Abdallah Alghazo & Norshima Humaidi & Shereen Noranee, 2023. "Assessing Information Security Competencies of Firm Leaders towards Improving Procedural Information Security Countermeasure: Awareness and Cybersecurity Protective Behavior," Information Management and Business Review, AMH International, vol. 15(1), pages 1-13.
    6. Nazir, Lubna & Sharifi, Ayyoob, 2024. "An analysis of barriers to the implementation of smart grid technology in Pakistan," Renewable Energy, Elsevier, vol. 220(C).
    7. Vinoth Kumar Ponnusamy & Padmanathan Kasinathan & Rajvikram Madurai Elavarasan & Vinoth Ramanathan & Ranjith Kumar Anandan & Umashankar Subramaniam & Aritra Ghosh & Eklas Hossain, 2021. "A Comprehensive Review on Sustainable Aspects of Big Data Analytics for the Smart Grid," Sustainability, MDPI, vol. 13(23), pages 1-35, December.
    8. Alam, Khandoker Shahjahan & Kaif, A.M.A. Daiyan & Das, Sajal K., 2024. "A blockchain-based optimal peer-to-peer energy trading framework for decentralized energy management with in a virtual power plant: Lab scale studies and large scale proposal," Applied Energy, Elsevier, vol. 365(C).
    9. Ben Krishna & Satish Krishnan & M. P. Sebastian, 2023. "Examining the Relationship between National Cybersecurity Commitment, Culture, and Digital Payment Usage: An Institutional Trust Theory Perspective," Information Systems Frontiers, Springer, vol. 25(5), pages 1713-1741, October.
    10. Gisliany Alves & Danielle Marques & Ivanovitch Silva & Luiz Affonso Guedes & Maria da Guia da Silva, 2019. "A Methodology for Dependability Evaluation of Smart Grids," Energies, MDPI, vol. 12(9), pages 1-23, May.
    11. Medjek, Faiza & Tandjaoui, Djamel & Djedjig, Nabil & Romdhani, Imed, 2021. "Fault-tolerant AI-driven Intrusion Detection System for the Internet of Things," International Journal of Critical Infrastructure Protection, Elsevier, vol. 34(C).
    12. Nakkeeran Murugesan & Anantha Narayanan Velu & Bagavathi Sivakumar Palaniappan & Balamurugan Sukumar & Md. Jahangir Hossain, 2024. "Mitigating Missing Rate and Early Cyberattack Discrimination Using Optimal Statistical Approach with Machine Learning Techniques in a Smart Grid," Energies, MDPI, vol. 17(8), pages 1-34, April.
    13. Jena, Prasanta Kumar & Ghosh, Subhojit & Koley, Ebha, 2021. "Design of a coordinated cyber-physical attack in IoT based smart grid under limited intruder accessibility," International Journal of Critical Infrastructure Protection, Elsevier, vol. 35(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:5:p:2549-:d:506561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.