IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i4p2389-d504151.html
   My bibliography  Save this article

Enhancing Air Quality for Embedded Hospital Germicidal Lamps

Author

Listed:
  • Jung-Shun Chen

    (Department of Industrial Technology Education, National Kaohsiung University, Kaohsiung 80201, Taiwan)

Abstract

The indoor air of a hospital is always full of bacteria and viruses due to patients with different diseases. These bacteria and viruses could be highly infectious to the people in the hospital irrespective of their health conditions, and could be hazardous to the patients, their care takers, and hospital staff. Thus, keeping a good hospital air quality is very essential to the operation of the hospital. This study aims at enhancing ventilation of the interior lighting of hospitals with germicidal capabilities. Air disinfection is accomplished by adding the specially designed disinfecting filters and fans to existing embedded lamps in the hospitals. The embedded lamp has a square shape of 601 mm in width and 112 mm in thickness. In the design stage, the air flow inside the embedded lamp with the added filters and fans was investigated by numerical simulation using a computational fluid dynamics (CFD) tool. Three designs, referred to as Types 1, 2, and 3, were evaluated using steady-state CFD flow simulations. The ventilation rate of the Type 1 design was about 251.9 CMH, and 348.3 CMH for the Type 2 design by increasing the fan outlet area. However, even though the ventilation was increased by 34%, the flow field of the Type 2 design was not uniform, resulting in flows being circulated around the side locations. Thus, the Type 3 design further treats this aspect by streamlining the outlet geometry and adding flow guiding vanes to reduce flow resistance and flow unsteadiness; the corresponding air ventilation rate reached 376.3 CMH. Hence, the Type 3 design was fabricated and tested. The test results confirm that the design not only has a higher ventilation rate but also operates under a smaller pressure drop, thus accomplishing the goal of providing good air quality in the hospital environment efficiently. Moreover, the associated flow noise is reduced by about 8 dBA. Hence, both an increase in the air ventilation rate and a reduction of noise are achieved simultaneously by the present method.

Suggested Citation

  • Jung-Shun Chen, 2021. "Enhancing Air Quality for Embedded Hospital Germicidal Lamps," Sustainability, MDPI, vol. 13(4), pages 1-11, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:2389-:d:504151
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/4/2389/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/4/2389/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chro Hama Radha, 2023. "Retrofitting for Improving Indoor Air Quality and Energy Efficiency in the Hospital Building," Sustainability, MDPI, vol. 15(4), pages 1-20, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:2389-:d:504151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.