IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i4p2000-d498458.html
   My bibliography  Save this article

Spatiotemporal Evolution of Multiscale Urbanization Level in the Beijing-Tianjin-Hebei Region Using the Integration of DMSP/OLS and NPP/VIIRS Night Light Datasets

Author

Listed:
  • Jingtao Wang

    (School of Management, China University of Mining and Technology, Beijing 100083, China)

  • Haibin Liu

    (School of Management, China University of Mining and Technology, Beijing 100083, China)

  • Hao Liu

    (School of Management, China University of Mining and Technology, Beijing 100083, China)

  • Hui Huang

    (School of Management, China University of Mining and Technology, Beijing 100083, China)

Abstract

The level of urbanization is a key factor in urban development. In this study, to better characterize the level of urbanization, the panel entropy weight method is used to weight the factors of population, industry, and area to construct a composite indicator of urbanization. A panel regression between this composite index and the average night light values after fusion shows a strong correlation. An accuracy test indicates that the estimated value of fused average light as calculated by the urbanization level estimation model that adequately represents the urbanization level. On this basis, night light data is corrected for zero error on the pixel scale, and spatiotemporal evolution analyses are performed on the city and county scales. The standard deviation ellipse method is used to find that the spatial distribution pattern of the Beijing-Tianjin-Hebei urbanization level from 1995 to 2018 radiates and spreads to the northeast, with Beijing-Tianjin as the center. The spatial pattern shows a contracting trend that is strengthening year by year. Slope analyses show that areas with rapid urbanization growth are mainly concentrated in Beijing and Tianjin. The urbanization development speed of most counties in the Hebei Province is at a low level.

Suggested Citation

  • Jingtao Wang & Haibin Liu & Hao Liu & Hui Huang, 2021. "Spatiotemporal Evolution of Multiscale Urbanization Level in the Beijing-Tianjin-Hebei Region Using the Integration of DMSP/OLS and NPP/VIIRS Night Light Datasets," Sustainability, MDPI, vol. 13(4), pages 1-28, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:2000-:d:498458
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/4/2000/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/4/2000/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Jincai & Ji, Guangxing & Yue, YanLin & Lai, Zhizhu & Chen, Yulong & Yang, Dongyang & Yang, Xu & Wang, Zheng, 2019. "Spatio-temporal dynamics of urban residential CO2 emissions and their driving forces in China using the integrated two nighttime light datasets," Applied Energy, Elsevier, vol. 235(C), pages 612-624.
    2. Fan, Jing-Li & Zhang, Yue-Jun & Wang, Bing, 2017. "The impact of urbanization on residential energy consumption in China: An aggregated and disaggregated analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 220-233.
    3. Zhao, Zhe & Bai, Yuping & Wang, Guofeng & Chen, Jiancheng & Yu, Jiangli & Liu, Wei, 2018. "Land eco-efficiency for new-type urbanization in the Beijing-Tianjin-Hebei Region," Technological Forecasting and Social Change, Elsevier, vol. 137(C), pages 19-26.
    4. Cai, Zhaoyang & Liu, Qing & Cao, Shixiong, 2020. "Real estate supports rapid development of China's urbanization," Land Use Policy, Elsevier, vol. 95(C).
    5. Bilgili, Faik & Koçak, Emrah & Bulut, Ümit & Kuloğlu, Ayhan, 2017. "The impact of urbanization on energy intensity: Panel data evidence considering cross-sectional dependence and heterogeneity," Energy, Elsevier, vol. 133(C), pages 242-256.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lin Li & Kaixu Zhao & Xinyu Wang & Sidong Zhao & Xingguang Liu & Weiwei Li, 2022. "Spatio-Temporal Evolution and Driving Mechanism of Urbanization in Small Cities: Case Study from Guangxi," Land, MDPI, vol. 11(3), pages 1-34, March.
    2. Kaizheng Xiang & Anzhou Zhao & Haixin Liu & Xiangrui Zhang & Anbing Zhang & Xinle Tian & Zihan Jin, 2022. "Spatiotemporal Evolution and Coupling Pattern Analysis of Urbanization and Ecological Environmental Quality of the Chinese Loess Plateau," Sustainability, MDPI, vol. 14(12), pages 1-19, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiang, Hongdian & Dong, Xiucheng & Jiang, Qingzhe & Dong, Kangyin, 2020. "What drives China's natural gas consumption? Analysis of national and regional estimates," Energy Economics, Elsevier, vol. 87(C).
    2. Yu, Binbin, 2021. "Ecological effects of new-type urbanization in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Wang, Qiang & Lin, Jian & Zhou, Kan & Fan, Jie & Kwan, Mei-Po, 2020. "Does urbanization lead to less residential energy consumption? A comparative study of 136 countries," Energy, Elsevier, vol. 202(C).
    4. Yulan Lv & Wei Chen & Jianquan Cheng, 2019. "Direct and Indirect Effects of Urbanization on Energy Intensity in Chinese Cities: A Regional Heterogeneity Analysis," Sustainability, MDPI, vol. 11(11), pages 1-20, June.
    5. Feng, Yidai & Yuan, Huaxi & Liu, Yaobin & Zhang, Shaohui, 2023. "Does new-type urbanization policy promote green energy efficiency? Evidence from a quasi-natural experiment in China," Energy Economics, Elsevier, vol. 124(C).
    6. Zhou, Anhua & Li, Jun, 2022. "How do trade liberalization and human capital affect renewable energy consumption? Evidence from the panel threshold model," Renewable Energy, Elsevier, vol. 184(C), pages 332-342.
    7. Sheng, Pengfei & Guo, Xiaohui, 2018. "Energy consumption associated with urbanization in China: Efficient- and inefficient-use," Energy, Elsevier, vol. 165(PB), pages 118-125.
    8. Chen, Huadun & Du, Qianxi & Huo, Tengfei & Liu, Peiran & Cai, Weiguang & Liu, Bingsheng, 2023. "Spatiotemporal patterns and driving mechanism of carbon emissions in China's urban residential building sector," Energy, Elsevier, vol. 263(PE).
    9. Qiucheng Li & Jiang Hu & Bolin Yu, 2021. "Spatiotemporal Patterns and Influencing Mechanism of Urban Residential Energy Consumption in China," Energies, MDPI, vol. 14(13), pages 1-17, June.
    10. Zhou, Yuanchun & Ma, Mengdie & Gao, Peiqi & Xu, Qiming & Bi, Jun & Naren, Tuya, 2019. "Managing water resources from the energy - water nexus perspective under a changing climate: A case study of Jiangsu province, China," Energy Policy, Elsevier, vol. 126(C), pages 380-390.
    11. Kingsley Appiah & Jianguo Du & Michael Yeboah & Rhoda Appiah, 2019. "Causal relationship between Industrialization, Energy Intensity, Economic Growth and Carbon dioxide emissions: recent evidence from Uganda," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 237-245.
    12. Zhenkai Yang & Mei-Chih Wang & Tsangyao Chang & Wing-Keung Wong & Fangjhy Li, 2022. "Which Factors Determine CO 2 Emissions in China? Trade Openness, Financial Development, Coal Consumption, Economic Growth or Urbanization: Quantile Granger Causality Test," Energies, MDPI, vol. 15(7), pages 1-18, March.
    13. Bakirtas, Tahsin & Akpolat, Ahmet Gokce, 2018. "The relationship between energy consumption, urbanization, and economic growth in new emerging-market countries," Energy, Elsevier, vol. 147(C), pages 110-121.
    14. Hong, Junjie & Shi, Fangyuan & Zheng, Yuhan, 2023. "Does network infrastructure construction reduce energy intensity? Based on the “Broadband China” strategy," Technological Forecasting and Social Change, Elsevier, vol. 190(C).
    15. Solomon P. Nathaniel & Festus V. Bekun, 2020. "Electricity Consumption, Urbanization and Economic Growth in Nigeria: New Insights from Combined Cointegration amidst Structural Breaks," Research Africa Network Working Papers 20/013, Research Africa Network (RAN).
    16. Meng Wang & Aleksandra Krstikj & Huan Liu, 2022. "Planning Compact City in Rapidly Growing Cities—An Estimation of the Effects of New-Type Urbanization Planning in Hangzhou City," Land, MDPI, vol. 11(11), pages 1-16, October.
    17. Yuqi Zhu & Siwei Shen & Linyu Du & Jun Fu & Jian Zou & Lina Peng & Rui Ding, 2023. "Spatial and Temporal Interaction Coupling of Digital Economy, New-Type Urbanization and Land Ecology and Spatial Effects Identification: A Study of the Yangtze River Delta," Land, MDPI, vol. 12(3), pages 1-27, March.
    18. Zhe Zhao & Pengyu Peng & Fan Zhang & Jiayin Wang & Hongxuan Li, 2022. "The Impact of the Urbanization Process on Agricultural Technical Efficiency in Northeast China," Sustainability, MDPI, vol. 14(19), pages 1-20, September.
    19. Xiwen Fu & Shuxin Wang, 2022. "How to Promote Low-Carbon Cities with Blockchain Technology? A Blockchain-Based Low-Carbon Development Model for Chinese Cities," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    20. Jin, Taeyoung, 2022. "Impact of heat and electricity consumption on energy intensity: A panel data analysis," Energy, Elsevier, vol. 239(PA).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:2000-:d:498458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.