IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i4p1964-d497925.html
   My bibliography  Save this article

Assessment Framework of Smart Shipyard Maturity Level via Data Envelopment Analysis

Author

Listed:
  • Jong Hun Woo

    (Department of Naval Architecture and Ocean Engineering, Seoul National University, Seoul 08826, Korea
    Research Institute of Marine Systems Engineering, Seoul National University, Seoul 08826, Korea)

  • Haoyu Zhu

    (Department of Naval Architecture and Ocean Engineering, Seoul National University, Seoul 08826, Korea)

  • Dong Kun Lee

    (Department of Naval Architecture and Ocean Engineering, Mokpo National Maritime University, Mokpo 58628, Korea)

  • Hyun Chung

    (Department of Naval Architecture and Ocean Engineering, Chungnam National University, Daejeon 34134, Korea)

  • Yongkuk Jeong

    (Department of Sustainable Production Development, KTH Royal Institute of Technology, 151 81 Södertälje, Sweden)

Abstract

The fourth industrial revolution (“Industry 4.0”) has caused an escalating need for smart technologies in manufacturing industries. Companies are examining various cutting-edge technologies to realize smart manufacturing and construct smart factories and are devoting efforts to improve their maturity level. However, productivity improvement is rarely achieved because of the large variety of new technologies and their wide range of applications; thus, elaborately setting improvement goals and plans are seldom accomplished. Fortunately, many researchers have presented guidelines for diagnosing the smartness maturity level and systematic directions to improve it, for the eventual improvement of productivity. However, most research has focused on mass production industries wherein the overall smartness maturity level is already high (e.g., high-level automation). These studies thus have limited applicability to the shipbuilding industry, which is basically a built-to-order industry. In this study, through a technical demand survey of the shipbuilding industry and an investigation of existing smart manufacturing and smart factories, the keywords of connectivity, automation, and intelligence were derived and based on these keywords, we developed a new diagnostic framework for smart shipyard maturity level assessment. The framework was applied to eight shipyards in South Korea to diagnose their smartness maturity level, and a data envelopment analysis (DEA) was performed to confirm the usefulness of the diagnosis results. By comparing the DEA models, the results with the smart level as an input represents the actual efficiency of shipyards better than the results of conventional models.

Suggested Citation

  • Jong Hun Woo & Haoyu Zhu & Dong Kun Lee & Hyun Chung & Yongkuk Jeong, 2021. "Assessment Framework of Smart Shipyard Maturity Level via Data Envelopment Analysis," Sustainability, MDPI, vol. 13(4), pages 1-27, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:1964-:d:497925
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/4/1964/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/4/1964/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Floriano Pires Jr. & Thomas Lamb & Cassiano Souza, 2009. "Shipbuilding performance benchmarking," International Journal of Business Performance Management, Inderscience Enterprises Ltd, vol. 11(3), pages 216-235.
    2. Jeongcheol Lee & Sungbum Jun & Tai-Woo Chang & Jinwoo Park, 2017. "A Smartness Assessment Framework for Smart Factories Using Analytic Network Process," Sustainability, MDPI, vol. 9(5), pages 1-15, May.
    3. Park, Jaehun & Lee, Dongha & Zhu, Joe, 2014. "An integrated approach for ship block manufacturing process performance evaluation: Case from a Korean shipbuilding company," International Journal of Production Economics, Elsevier, vol. 156(C), pages 214-222.
    4. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    5. Dyson, R. G. & Allen, R. & Camanho, A. S. & Podinovski, V. V. & Sarrico, C. S. & Shale, E. A., 2001. "Pitfalls and protocols in DEA," European Journal of Operational Research, Elsevier, vol. 132(2), pages 245-259, July.
    6. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zanella, Andreia & Camanho, Ana S. & Dias, Teresa G., 2015. "Undesirable outputs and weighting schemes in composite indicators based on data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 245(2), pages 517-530.
    2. George Halkos & Roman Matousek & Nickolaos Tzeremes, 2016. "Pre-evaluating technical efficiency gains from possible mergers and acquisitions: evidence from Japanese regional banks," Review of Quantitative Finance and Accounting, Springer, vol. 46(1), pages 47-77, January.
    3. H Fukuyama & W L Weber, 2009. "Estimating indirect allocative inefficiency and productivity change," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(11), pages 1594-1608, November.
    4. Ahn, Heinz & Clermont, Marcel & Langner, Julia, 2023. "Comparative performance analysis of frontier-based efficiency measurement methods – A Monte Carlo simulation," European Journal of Operational Research, Elsevier, vol. 307(1), pages 294-312.
    5. A. Guerrini & G. Romano & L. Carosi & F. Mancuso, 2017. "Cost Savings in Wastewater Treatment Processes: the Role of Environmental and Operational Drivers," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(8), pages 2465-2478, June.
    6. Musshoff, Oliver & Hirschauer, Norbert & Herink, Michael, 2009. "Bei welchen Problemstrukturen sind Data-Envelopment-Analysen sinnvoll? Eine kritische Würdigung," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 58(02), pages 1-11, February.
    7. Sufian, Fadzlan & Abdul Majid, Muhamed Zulkhibri, 2007. "Consolidation and efficiency: Evidence from non-bank financial institutions in Malaysia," MPRA Paper 12128, University Library of Munich, Germany, revised 01 May 2007.
    8. Cordero, José Manuel & Santín, Daniel & Sicilia, Gabriela, 2015. "Testing the accuracy of DEA estimates under endogeneity through a Monte Carlo simulation," European Journal of Operational Research, Elsevier, vol. 244(2), pages 511-518.
    9. Cheng, Xiaomei & Bjørndal, Endre & Bjørndal, Mette, 2015. "Optimal Scale in Different Environments – The Case of Norwegian Electricity Distribution Companies," Discussion Papers 2015/22, Norwegian School of Economics, Department of Business and Management Science.
    10. Ülengin, Füsun & Kabak, Özgür & Önsel, Sule & Aktas, Emel & Parker, Barnett R., 2011. "The competitiveness of nations and implications for human development," Socio-Economic Planning Sciences, Elsevier, vol. 45(1), pages 16-27, March.
    11. Ole Bent Olesen & Niels Christian Petersen & Victor V. Podinovski, 2022. "Scale characteristics of variable returns-to-scale production technologies with ratio inputs and outputs," Annals of Operations Research, Springer, vol. 318(1), pages 383-423, November.
    12. Avkiran, Necmi K., 2006. "Developing foreign bank efficiency models for DEA grounded in finance theory," Socio-Economic Planning Sciences, Elsevier, vol. 40(4), pages 275-296, December.
    13. M. Soleimani-damaneh & M. Zarepisheh, 2009. "Linear transformations to decrease computational requirements of solving some known linear programming models," Annals of Operations Research, Springer, vol. 172(1), pages 37-43, November.
    14. Eugenia Nissi & Massimiliano Giacalone & Carlo Cusatelli, 2019. "The Efficiency of the Italian Judicial System: A Two Stage Data Envelopment Analysis Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(1), pages 395-407, November.
    15. Zhicheng Lai & Lei Li & Zhuomin Tao & Tao Li & Xiaoting Shi & Jialing Li & Xin Li, 2023. "Spatio-Temporal Evolution and Influencing Factors of Ecological Well-Being Performance from the Perspective of Strong Sustainability: A Case Study of the Three Gorges Reservoir Area, China," IJERPH, MDPI, vol. 20(3), pages 1-25, January.
    16. Saranga, Haritha & Nagpal, Rajiv, 2016. "Drivers of operational efficiency and its impact on market performance in the Indian Airline industry," Journal of Air Transport Management, Elsevier, vol. 53(C), pages 165-176.
    17. Loske, Dominic & Klumpp, Matthias, 2021. "Human-AI collaboration in route planning: An empirical efficiency-based analysis in retail logistics," International Journal of Production Economics, Elsevier, vol. 241(C).
    18. Ramanathan, Ramakrishnan & Ramanathan, Usha & Bentley, Yongmei, 2018. "The debate on flexibility of environmental regulations, innovation capabilities and financial performance – A novel use of DEA," Omega, Elsevier, vol. 75(C), pages 131-138.
    19. Sebastian Cuadros & Yeny E. Rodríguez & Javier Contreras, 2020. "Dynamic Data Envelopment Analysis Model Involving Undesirable Outputs in the Electricity Power Generation Sector: The Case of Latin America and the Caribbean Countries," Energies, MDPI, vol. 13(24), pages 1-20, December.
    20. Josef Jablonský, 2019. "Data Envelopment Analysis Models in Non-Homogeneous Environment," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 67(6), pages 1535-1540.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:1964-:d:497925. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.