IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i4p1794-d495091.html
   My bibliography  Save this article

Analysis of Spatial and Temporal Characteristics and Spatial Flow Process of Soil Conservation Service in Jinghe Basin of China

Author

Listed:
  • Ting Zheng

    (College of Geomatics, Xi’an University of Science and Technology, Xi’an 710054, Shaanxi, China)

  • Zixiang Zhou

    (College of Geomatics, Xi’an University of Science and Technology, Xi’an 710054, Shaanxi, China)

  • Yufeng Zou

    (Department of Foreign Languages, Northwest A&F University, Yangling 712100, Shaanxi, China
    Institute of Water Saving Agriculture in Arid Areas of China, Northwest A&F University, Yangling 712100, Shaanxi, China)

  • Bakhtiyor Pulatov

    (Tashkent Institute of Irrigation and Agricultural Mechanization Engineers, Qoriy Niyoziy 39, Tashkent 100000, Uzbekistan)

  • Asim Biswas

    (School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada)

Abstract

The supply and demand of ecosystem services and their mutual feedback are important for the formulation of basin ecological environmental policies. Simulation of the spatial flow of ecosystem services can clarify the division of areas and can support policy development. This paper takes the Jinghe Basin in the Loess Plateau of China as the case-study area to simulate the spatial flow of soil conservation service on different scales. The results showed that (1) soil erosion situations in Jinghe Basin improved overall, with a trend of first aggravating and then recovering between 2005 and 2015; (2) the amount of annual soil conservation in the basin accounted for more than 75% of the potential soil erosion and showed a trend of first increasing and then decreasing; and (3) using digital elevation model (DEM) data and ArcGIS software, the experiment divided the basin into sub-basins (58 in total) and hydrological response units (HRUs) (e.g., 2181 HRUs in sub-basin #1), which were used to quantify the spatial flow direction and the corresponding amount of soil conservation service on the “HRU—river-sub-basin” scale. The divided supply and demand helped quantify the spatial flow pattern of soil conservation services from HRU to the sub-basin.

Suggested Citation

  • Ting Zheng & Zixiang Zhou & Yufeng Zou & Bakhtiyor Pulatov & Asim Biswas, 2021. "Analysis of Spatial and Temporal Characteristics and Spatial Flow Process of Soil Conservation Service in Jinghe Basin of China," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:1794-:d:495091
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/4/1794/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/4/1794/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chengyan Tang & Jing Li & Zixiang Zhou & Li Zeng & Cheng Zhang & Hui Ran, 2019. "How to Optimize Ecosystem Services Based on a Bayesian Model: A Case Study of Jinghe River Basin," Sustainability, MDPI, vol. 11(15), pages 1-18, August.
    2. Wang, Zhuangzhuang & Zhang, Liwei & Li, Xupu & Li, Yingjie & Frans, Veronica F. & Yan, Junping, 2020. "A network perspective for mapping freshwater service flows at the watershed scale," Ecosystem Services, Elsevier, vol. 45(C).
    3. Lufafa, A. & Tenywa, M. M. & Isabirye, M. & Majaliwa, M. J. G. & Woomer, P. L., 2003. "Prediction of soil erosion in a Lake Victoria basin catchment using a GIS-based Universal Soil Loss model," Agricultural Systems, Elsevier, vol. 76(3), pages 883-894, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhanxing Li & Yanhui Wang & Junwu Dong & Xiaoyue Luo & Hao Wu & Yuan Wan, 2023. "Assessment of Land Degradation at the Local Level in Response to SDG 15.3: A Case Study of the Inner Mongolia Region from 2000 to 2020," Sustainability, MDPI, vol. 15(5), pages 1-21, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jinzhu Jiu & Hongjuan Wu & Sen Li, 2019. "The Implication of Land-Use/Land-Cover Change for the Declining Soil Erosion Risk in the Three Gorges Reservoir Region, China," IJERPH, MDPI, vol. 16(10), pages 1-16, May.
    2. Jasmin Ismail & S. Ravichandran, 2008. "RUSLE2 Model Application for Soil Erosion Assessment Using Remote Sensing and GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 22(1), pages 83-102, January.
    3. Qi Fu & Bo Li & Linlin Yang & Zhilong Wu & Xinshi Zhang, 2015. "Ecosystem Services Evaluation and Its Spatial Characteristics in Central Asia’s Arid Regions: A Case Study in Altay Prefecture, China," Sustainability, MDPI, vol. 7(7), pages 1-19, June.
    4. Simonit, Silvio & Perrings, Charles, 2011. "Sustainability and the value of the 'regulating' services: Wetlands and water quality in Lake Victoria," Ecological Economics, Elsevier, vol. 70(6), pages 1189-1199, April.
    5. Mengxue Liu & Xiaobin Dong & Xuechao Wang & Bingyu Zhao & Hejie Wei & Weiguo Fan & Chenyang Zhang, 2022. "The Trade-Offs/Synergies and Their Spatial-Temporal Characteristics between Ecosystem Services and Human Well-Being Linked to Land-Use Change in the Capital Region of China," Land, MDPI, vol. 11(5), pages 1-22, May.
    6. Pender, John L. & Nkonya, Ephraim M. & Kato, Edward & Kaizzi, Crammer & Ssali, Henry, 2009. "Impacts of Cash Crop Production on Land Management and Land Degradation: The Case of Coffee and Cotton in Uganda," 2009 Conference, August 16-22, 2009, Beijing, China 50760, International Association of Agricultural Economists.
    7. Pham, Hung Vuong & Sperotto, Anna & Furlan, Elisa & Torresan, Silvia & Marcomini, Antonio & Critto, Andrea, 2021. "Integrating Bayesian Networks into ecosystem services assessment to support water management at the river basin scale," Ecosystem Services, Elsevier, vol. 50(C).
    8. Heger, Martin Philipp & Zens, Gregor & Bangalore, Mook, 2020. "Land and poverty: the role of soil fertility and vegetation quality in poverty reduction," LSE Research Online Documents on Economics 115658, London School of Economics and Political Science, LSE Library.
    9. Dennis Ochola & Bastiaen Boekelo & Gerrie W J van de Ven & Godfrey Taulya & Jerome Kubiriba & Piet J A van Asten & Ken E Giller, 2022. "Mapping spatial distribution and geographic shifts of East African highland banana (Musa spp.) in Uganda," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-28, February.
    10. Pender, John & Nkonya, Ephraim & Jagger, Pamela & Sserunkuuma, Dick & Ssali, Henry, 2004. "Strategies to increase agricultural productivity and reduce land degradation: evidence from Uganda," Agricultural Economics, Blackwell, vol. 31(2-3), pages 181-195, December.
    11. Faridi, Amir Ali & Kavoosi-Kalashami, Mohammad & Bilali, Hamid El, 2020. "Attitude components affecting adoption of soil and water conservation measures by paddy farmers in Rasht County, Northern Iran," Land Use Policy, Elsevier, vol. 99(C).
    12. Fenglian Liu & Aiwen Lin & Huanhuan Wang & Yuling Peng & Song Hong, 2016. "Global research trends of geographical information system from 1961 to 2010: a bibliometric analysis," Scientometrics, Springer;Akadémiai Kiadó, vol. 106(2), pages 751-768, February.
    13. Nareth Nut & Machito Mihara & Jaehak Jeong & Bunthan Ngo & Gilbert Sigua & P.V. Vara Prasad & Manny R. Reyes, 2021. "Land Use and Land Cover Changes and Its Impact on Soil Erosion in Stung Sangkae Catchment of Cambodia," Sustainability, MDPI, vol. 13(16), pages 1-25, August.
    14. Forio, Marie Anne Eurie & Villa-Cox, Gonzalo & Van Echelpoel, Wout & Ryckebusch, Helena & Lock, Koen & Spanoghe, Pieter & Deknock, Arne & De Troyer, Niels & Nolivos-Alvarez, Indira & Dominguez-Granda,, 2020. "Bayesian Belief Network models as trade-off tools of ecosystem services in the Guayas River Basin in Ecuador," Ecosystem Services, Elsevier, vol. 44(C).
    15. van Asten, P.J.A. & Wairegi, L.W.I. & Mukasa, D. & Uringi, N.O., 2011. "Agronomic and economic benefits of coffee-banana intercropping in Uganda's smallholder farming systems," Agricultural Systems, Elsevier, vol. 104(4), pages 326-334, April.
    16. Andrew K. Marondedze & Brigitta Schütt, 2020. "Assessment of Soil Erosion Using the RUSLE Model for the Epworth District of the Harare Metropolitan Province, Zimbabwe," Sustainability, MDPI, vol. 12(20), pages 1-24, October.
    17. Paulo de Oliveira & Teodorico Sobrinho & Dulce Rodrigues & Elói Panachuki, 2011. "Erosion Risk Mapping Applied to Environmental Zoning," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(3), pages 1021-1036, February.
    18. Taingaun Sourn & Sophak Pok & Phanith Chou & Nareth Nut & Dyna Theng & P. V. Vara Prasad, 2022. "Assessment of Land Use and Land Cover Changes on Soil Erosion Using Remote Sensing, GIS and RUSLE Model: A Case Study of Battambang Province, Cambodia," Sustainability, MDPI, vol. 14(7), pages 1-24, March.
    19. Pan, Ying & Xu, Zengrang & Wu, Junxi, 2013. "Spatial differences of the supply of multiple ecosystem services and the environmental and land use factors affecting them," Ecosystem Services, Elsevier, vol. 5(C), pages 4-10.
    20. Yang Xiao & Qinli Xiong & Kaiwen Pan, 2018. "What Is Left for Our Next Generation? Integrating Ecosystem Services into Regional Policy Planning in the Three Gorges Reservoir Area of China," Sustainability, MDPI, vol. 11(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:4:p:1794-:d:495091. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.