IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i3p1480-d490674.html
   My bibliography  Save this article

The Influence of Climate, Soil Properties and Vegetation on Soil Nitrogen in Sloping Farmland

Author

Listed:
  • Shanshan Liu

    (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

  • Tianling Qin

    (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

  • Biqiong Dong

    (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

  • Xuan Shi

    (College of Engineering, San Jose State University, San Jose, CA 95192, USA)

  • Zhenyu Lv

    (State Key Laboratory of Simulation and Regulation of Water Cycle in River Basin, China Institute of Water Resources and Hydropower Research, Beijing 100038, China)

  • Guangjun Zhang

    (College of Conservancy Engineering, Zhengzhou University, Zhengzhou 450000, China)

Abstract

Soil nitrogen in farmland ecosystems is affected by climate, soil physical and chemical properties and planting activities. To clarify the effects of these factors on soil nitrogen in sloping farmland quantitatively, the distribution of soil total nitrogen (TN) content, nitrate nitrogen (NO 3 -N) content and ammonium nitrogen (NH 4 -N) content at depth of 0–100 cm on 11 profiles of the Luanhe River Basin were analyzed. Meanwhile, soil physical and chemical properties, climatic factors and NDVI (Normalized Difference Vegetation Index) were used to construct a structural equation which reflected the influence mechanism of environmental factors on soil nitrogen concentration. The results showed that TN and NO 3 -N content decreased with the increase of soil depth in the Luanhe River Basin, while the variation of NH 4 -N content with soil depth was not obvious. Soil organic carbon (SOC) content, soil pH, soil area average particle size (SMD) and NDVI6 (NDVI of June) explained variation of TN content by 77.4%. SOC was the most important environmental factor contributing to the variation of TN content. NDVI5 (NDVI of May), annual average precipitation (MAP), soil pH and SOC explained 49.1% variation of NO 3 -N content. Among all environmental factors, only NDVI8 (NDVI of August) had significant correlation with soil NH 4 -N content, which explained the change of NH 4 -N content by 24.2%. The results showed that soil nitrogen content in the sloping farmland ecosystem was mainly affected by natural factors such as soil parent material and climate.

Suggested Citation

  • Shanshan Liu & Tianling Qin & Biqiong Dong & Xuan Shi & Zhenyu Lv & Guangjun Zhang, 2021. "The Influence of Climate, Soil Properties and Vegetation on Soil Nitrogen in Sloping Farmland," Sustainability, MDPI, vol. 13(3), pages 1-14, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1480-:d:490674
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/3/1480/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/3/1480/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Sheng & Weizhong Liu & Hailiang Xu & Xianchao Gao, 2021. "The Spatial Distribution Characteristics of the Cultivated Land Quality in the Diluvial Fan Terrain of the Arid Region: A Case Study of Jimsar County, Xinjiang, China," Land, MDPI, vol. 10(9), pages 1-29, August.
    2. Jasmina Defterdarović & Lana Filipović & Filip Kranjčec & Gabrijel Ondrašek & Diana Kikić & Alen Novosel & Ivan Mustać & Vedran Krevh & Ivan Magdić & Vedran Rubinić & Igor Bogunović & Ivan Dugan & Kre, 2021. "Determination of Soil Hydraulic Parameters and Evaluation of Water Dynamics and Nitrate Leaching in the Unsaturated Layered Zone: A Modeling Case Study in Central Croatia," Sustainability, MDPI, vol. 13(12), pages 1-20, June.
    3. Jianghua Tang & Lili Su & Yanfei Fang & Chen Wang & Linyi Meng & Jiayong Wang & Junyao Zhang & Wenxiu Xu, 2023. "Moderate Nitrogen Reduction Increases Nitrogen Use Efficiency and Positively Affects Microbial Communities in Agricultural Soils," Agriculture, MDPI, vol. 13(4), pages 1-24, March.
    4. Chen, Lina & Zhao, Zilong & Li, Jiang & Wang, Haiming & Guo, Guomian & Wu, Wenbo, 2022. "Effects of muddy water irrigation with different sediment particle sizes and sediment concentrations on soil microbial communities in the Yellow River Basin of China," Agricultural Water Management, Elsevier, vol. 270(C).
    5. Manal A. Alnaimy & Sahar A. Shahin & Ahmed A. Afifi & Ahmed A. Ewees & Natalia Junakova & Magdalena Balintova & Mohamed Abd Elaziz, 2022. "Spatio Prediction of Soil Capability Modeled with Modified RVFL Using Aptenodytes Forsteri Optimization and Digital Soil Assessment Technique," Sustainability, MDPI, vol. 14(22), pages 1-20, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1480-:d:490674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.