Predicting Volatility Index According to Technical Index and Economic Indicators on the Basis of Deep Learning Algorithm
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Hyun Sik Sim & Hae In Kim & Jae Joon Ahn, 2019. "Is Deep Learning for Image Recognition Applicable to Stock Market Prediction?," Complexity, Hindawi, vol. 2019, pages 1-10, February.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wenjuan, Zhu & Zhong, Kaiyang & He, Mingqiang & Pham, Thanh Huong & Nguyen, Quang Khai & Huy, Pham Quang, 2023. "Volatility challenges for natural resources during COVID-19 and its impact on economic development for sustainable economic repossession," Resources Policy, Elsevier, vol. 86(PB).
- Pavel Baboshkin & Alexey Mikhaylov & Zaffar Ahmed Shaikh, 2022. "Sustainable Cryptocurrency Growth Impossible? Impact of Network Power Demand on Bitcoin Price," Finansovyj žhurnal — Financial Journal, Financial Research Institute, Moscow 125375, Russia, issue 3, pages 116-130, June.
- Hsu, Ching-Chi & Chau, Ka Yin & Chien, FengSheng, 2023. "Natural resource volatility and financial development during Covid-19: Implications for economic recovery," Resources Policy, Elsevier, vol. 81(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liping Wang & Jiawei Li & Lifan Zhao & Zhizhuo Kou & Xiaohan Wang & Xinyi Zhu & Hao Wang & Yanyan Shen & Lei Chen, 2023. "Methods for Acquiring and Incorporating Knowledge into Stock Price Prediction: A Survey," Papers 2308.04947, arXiv.org.
- Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," LawArXiv kczj5, Center for Open Science.
- Matej Steinbacher, 2023. "Predicting Stock Price Movement as an Image Classification Problem," Papers 2303.01111, arXiv.org.
- Saeed Nosratabadi & Amir Mosavi & Puhong Duan & Pedram Ghamisi, 2020. "Data Science in Economics," Papers 2003.13422, arXiv.org.
- Ruibo Chen & Wei Li & Zhiyuan Zhang & Ruihan Bao & Keiko Harimoto & Xu Sun, 2022. "Stock Trading Volume Prediction with Dual-Process Meta-Learning," Papers 2211.01762, arXiv.org.
- Saeed Nosratabadi & Amirhosein Mosavi & Puhong Duan & Pedram Ghamisi & Ferdinand Filip & Shahab S. Band & Uwe Reuter & Joao Gama & Amir H. Gandomi, 2020. "Data Science in Economics: Comprehensive Review of Advanced Machine Learning and Deep Learning Methods," Mathematics, MDPI, vol. 8(10), pages 1-25, October.
- Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," MetaArXiv haf2v, Center for Open Science.
- Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," OSF Preprints yc6e2, Center for Open Science.
- Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," EdArXiv 5dwrt, Center for Open Science.
- Mamoona Zahid & Farhat Iqbal & Dimitrios Koutmos, 2022. "Forecasting Bitcoin Volatility Using Hybrid GARCH Models with Machine Learning," Risks, MDPI, vol. 10(12), pages 1-18, December.
- Guangxun Jin & Ohbyung Kwon, 2021. "Impact of chart image characteristics on stock price prediction with a convolutional neural network," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-18, June.
- Ma, Chenyao & Yan, Sheng, 2022. "Deep learning in the Chinese stock market: The role of technical indicators," Finance Research Letters, Elsevier, vol. 49(C).
- Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," SocArXiv 9vdwf, Center for Open Science.
- Nosratabadi, Saeed & Mosavi, Amir & Duan, Puhong & Ghamisi, Pedram & Filip, Ferdinand & Band, Shahab S. & Reuter, Uwe & Gama, Joao & Gandomi, Amir H., 2020. "Data science in economics: comprehensive review of advanced machine learning and deep learning methods," Thesis Commons auyvc, Center for Open Science.
More about this item
Keywords
sustainable financial markets; volatility index; deep neural network; convolution of probability;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:24:p:14011-:d:705966. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.