IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i23p13154-d689466.html
   My bibliography  Save this article

Signal Control Method for Through and Left-Turn Shared Lane by Setting Left-Turn Waiting Area at Signalized Intersections

Author

Listed:
  • Xiancai Jiang

    (School of Transportation Science & Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Li Yao

    (School of Transportation Science & Engineering, Harbin Institute of Technology, Harbin 150001, China)

  • Yao Jin

    (Department of Intelligent Transportation, Heilongjiang Transportation Information and Planning Research Center, Harbin 150080, China)

  • Runting Wu

    (School of Land Resources and Urban & Rural Planning, Hebei GEO University, Shijiazhuang 050031, China)

Abstract

This paper proposes a signal control method for the through and left-turn shared lanes at signalized intersections to solve traffic conflicts between left-turn vehicles and opposing through vehicles by setting left-turn waiting area (LWA). Delays and stops are weighted to form an integrated performance index (PI) in a vehicle-to-infrastructure cooperation system. The PI models pertaining to all vehicles are established based on the LWA intersection. In addition, an optimized method of signal timing parameters is constructed by minimizing the average PI. VISSIM simulation shows that the average PI decreases by 6.51% compared with the original layout and signal timing plan of the intersection, since the increased delay of the side-road left-turn vehicles is insufficient to offset the reduced delay of the side-road through vehicles after the improvement. The sensitivity analysis shows that the greater the traffic volume of the phase including the through and left-turn shared lanes, the higher the operation efficiency of the LWA intersection compared with the typical permitted phase intersection. When the left-turn vehicles of the shared lanes in each cycle are less than the stop spaces, the LWA intersection can effectively reduce the average PI of the shared lanes. Furthermore, the more the stop spaces in the LWA, the lower the average PI in the same traffic conditions.

Suggested Citation

  • Xiancai Jiang & Li Yao & Yao Jin & Runting Wu, 2021. "Signal Control Method for Through and Left-Turn Shared Lane by Setting Left-Turn Waiting Area at Signalized Intersections," Sustainability, MDPI, vol. 13(23), pages 1-17, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:23:p:13154-:d:689466
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/23/13154/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/23/13154/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, Wanjing & Liu, Ye & Zhao, Jing & Wu, Ning, 2017. "Increasing the capacity of signalized intersections with left-turn waiting areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 105(C), pages 181-196.
    2. Senlai Zhu & Ke Guo & Yuntao Guo & Huairen Tao & Quan Shi, 2019. "An Adaptive Signal Control Method with Optimal Detector Locations," Sustainability, MDPI, vol. 11(3), pages 1-13, January.
    3. Nicholas Brian Hounsell & Yok Hoe Yap, 2015. "Hook Turns as a Solution to the Right-Turning Traffic Problem," Transportation Science, INFORMS, vol. 49(1), pages 1-12, February.
    4. Yang, Qiaoli & Shi, Zhongke & Yu, Shaowei & Zhou, Jie, 2018. "Analytical evaluation of the use of left-turn phasing for single left-turn lane only," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 266-303.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Qiaoli & Shi, Zhongke, 2018. "Effects of the design of waiting areas on the dynamic behavior of queues at signalized intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 181-195.
    2. Zhao, Jing & Yan, Jiachao & Wang, Jiawen, 2019. "Analysis of alternative treatments for left turn bicycles at tandem intersections," Transportation Research Part A: Policy and Practice, Elsevier, vol. 126(C), pages 314-328.
    3. Binghong Pan & Shasha Luo & Jinfeng Ying & Yang Shao & Shangru Liu & Xiang Li & Jiaqi Lei, 2021. "Evaluation and Analysis of CFI Schemes with Different Length of Displaced Left-Turn Lanes with Entropy Method," Sustainability, MDPI, vol. 13(12), pages 1-27, June.
    4. Hu, Sangen & Shen, Minyu & Gu, Weihua, 2023. "Impacts of bus overtaking policies on the capacity of bus stops," Transportation Research Part A: Policy and Practice, Elsevier, vol. 173(C).
    5. Yang, Qiaoli & Fu, Xue, 2024. "An extended queueing model for vehicles at signalized intersections considering the platoon correlated arrivals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 635(C).
    6. Yang, Qiaoli & He, Yongzhen, 2022. "Right-turn-on-red queueing process at signalized intersections with a short right-turn lane," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 598(C).
    7. Ramadan Duraku & Diellza Boshnjaku, 2024. "Enhancing Traffic Sustainability: An Analysis of Isolation Intersection Effectiveness through Fixed Time and Logic Control Design Using VisVAP Algorithm," Sustainability, MDPI, vol. 16(7), pages 1-28, April.
    8. Yang Shao & Zhongbin Luo & Huan Wu & Xueyan Han & Binghong Pan & Shangru Liu & Christian G. Claudel, 2020. "Evaluation of Two Improved Schemes at Non-Aligned Intersections Affected by a Work Zone with an Entropy Method," Sustainability, MDPI, vol. 12(14), pages 1-24, July.
    9. Yang, Qiaoli & Shi, Zhongke & Tang, Min-an & Gao, Fengyang & Yu, Shaowei, 2019. "Modeling the permissive-only left-turn queue at signals," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 315-325.
    10. Heqing Tan & Muqing Du & Xiaowei Jiang & Zhaoming Chu, 2019. "The Combined Distribution and Assignment Model: A New Solution Algorithm and Its Applications in Travel Demand Forecasting for Modern Urban Transportation," Sustainability, MDPI, vol. 11(7), pages 1-18, April.
    11. Zibin Wei & Tao Peng & Sijia Wei, 2022. "A Robust Adaptive Traffic Signal Control Algorithm Using Q-Learning under Mixed Traffic Flow," Sustainability, MDPI, vol. 14(10), pages 1-16, May.
    12. Yang, Qiaoli & Shi, Zhongke, 2021. "The queue dynamics of protected/permissive left turns at pre-timed signalized intersections," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 562(C).
    13. Arshad Jamal & Muhammad Tauhidur Rahman & Hassan M. Al-Ahmadi & Irfan Ullah & Muhammad Zahid, 2020. "Intelligent Intersection Control for Delay Optimization: Using Meta-Heuristic Search Algorithms," Sustainability, MDPI, vol. 12(5), pages 1-23, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:23:p:13154-:d:689466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.