IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i23p13097-d688509.html
   My bibliography  Save this article

Research on Truck Traffic Volume Conditions of Auxiliary Lanes on Two-Lane Highways

Author

Listed:
  • Guozhu Cheng

    (School of Traffic and Transportation, Northeast Forestry University, Harbin 150040, China)

  • Changru Mu

    (School of Traffic and Transportation, Northeast Forestry University, Harbin 150040, China)

  • Liang Xu

    (School of Civil Engineering, Changchun Institute of Technology, Changchun 130012, China)

  • Xuejian Kang

    (State Key Laboratory of Mechanical Behavior and System Safety of Traffic Engineering Structures, Shijiazhuang 050043, China
    Key Laboratory of Traffic Safety and Control of Hebei Province, Shijiazhuang Tiedao University, Shijiazhuang 050043, China)

Abstract

The larger the proportion of truck traffic volume, the greater the impact on traffic efficiency, and overtaking behavior will also have an impact. Therefore, in order to clarify the truck traffic volume of the freight two-lane highway due to the difficulty of overtaking, an actual vehicle test is carried out. This involves selecting the appropriate two-lane test section, recording each moment and speed in the driver’s overtaking behavior, performing multiple regression analysis to examine the relationship between the overtaking conflict time and design speed and traffic volume, determining a reasonable evaluation series of two-lane road overtaking risk and the corresponding overtaking conflict time threshold by the Fisher optimal segmentation method, and giving an overtaking behavior risk evaluation method based on conflict time. Finally, according to the overtaking conflict time model, different truck traffic conditions are obtained. The research results show that overtaking conflict time is negatively correlated with the traffic volume and design speed of the lane. Through the risk assessment of the corresponding overtaking behavior, the three levels of serious conflict, general conflict and non-conflict are determined, and the freight traffic volume corresponding to different conflict levels at different speeds is calculated, which provides a reference for setting auxiliary lanes for the two-lane freight highway.

Suggested Citation

  • Guozhu Cheng & Changru Mu & Liang Xu & Xuejian Kang, 2021. "Research on Truck Traffic Volume Conditions of Auxiliary Lanes on Two-Lane Highways," Sustainability, MDPI, vol. 13(23), pages 1-11, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:23:p:13097-:d:688509
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/23/13097/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/23/13097/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rowangould, Gregory, 2013. "Public financing of private freight rail infrastructure to reduce highway congestion: A case study of public policy and decision making in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 57(C), pages 25-36.
    2. Jansuwan, Sarawut & Chen, Anthony & Xu, Xiangdong, 2021. "Analysis of freight transportation network redundancy: An application to Utah’s bi-modal network for transporting coal," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 154-171.
    3. Yuan, Quan & Wang, Jueyu, 2021. "Goods movement, road safety, and spatial inequity: Evaluating freight-related crashes in low-income or minority neighborhoods," Journal of Transport Geography, Elsevier, vol. 96(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seyedehmehrmanzar Sohrab & Nándor Csikós & Péter Szilassi, 2022. "Connection between the Spatial Characteristics of the Road and Railway Networks and the Air Pollution (PM10) in Urban–Rural Fringe Zones," Sustainability, MDPI, vol. 14(16), pages 1-20, August.
    2. Maksymilian Mądziel & Tiziana Campisi, 2023. "Investigation of Vehicular Pollutant Emissions at 4-Arm Intersections for the Improvement of Integrated Actions in the Sustainable Urban Mobility Plans (SUMPs)," Sustainability, MDPI, vol. 15(3), pages 1-20, January.
    3. Cheng Wang & Liyang Wei & Kun Wang & Hongya Tang & Bo Yang & Mengfan Li, 2022. "Investigating the Factors Affecting Rider’s Decision on Overtaking Behavior: A Naturalistic Riding Research in China," Sustainability, MDPI, vol. 14(18), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cartenì, Armando & Pariota, Luigi & Henke, Ilaria, 2017. "Hedonic value of high-speed rail services: Quantitative analysis of the students’ domestic tourist attractiveness of the main Italian cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 348-365.
    2. Thanapong Champahom & Chamroeun Se & Sajjakaj Jomnonkwao & Tassana Boonyoo & Vatanavongs Ratanavaraha, 2023. "A Comparison of Contributing Factors between Young and Old Riders of Motorcycle Crash Severity on Local Roads," Sustainability, MDPI, vol. 15(3), pages 1-24, February.
    3. Mariia OLKHOVA & Yurii DAVIDICH & Dmytro ROSLAVTSEV & Nataliia DAVIDICH, 2017. "The Efficiency Of Transportating Perishable Goods By Road And Rail," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 12(4), pages 37-50, December.
    4. Zhang, Li & Chen, Tingting & Liu, Zhongshan & Yu, Bin & Wang, Yunpeng, 2024. "Analysis of multi-modal public transportation system performance under metro disruptions: A dynamic resilience assessment framework," Transportation Research Part A: Policy and Practice, Elsevier, vol. 183(C).
    5. Hanlin Gao & Meiqing Zhang & Anne Goodchild, 2020. "Empirical Analysis of Relieving High-Speed Rail Freight Congestion in China," Sustainability, MDPI, vol. 12(23), pages 1-16, November.
    6. Li, Jin-Yang & Teng, Jing & Wang, Hui, 2024. "Measuring route diversity in spatial and spatial-temporal public transport networks," Transport Policy, Elsevier, vol. 146(C), pages 42-58.
    7. Nikolay Rashevskiy & Natalia Sadovnikova & Tatyana Ereshchenko & Danila Parygin & Alexander Ignatyev, 2023. "Atmospheric Ecology Modeling for the Sustainable Development of the Urban Environment," Energies, MDPI, vol. 16(4), pages 1-24, February.
    8. Xu, Min & Li, Guoyuan & Chen, Anthony, 2024. "Resilience-driven post-disaster restoration of interdependent infrastructure systems under different decision-making environments," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    9. Wei, Qinshuang & Gao, Zhenyu & Clarke, John-Paul & Topcu, Ufuk, 2024. "Risk-aware urban air mobility network design with overflow redundancy," Transportation Research Part B: Methodological, Elsevier, vol. 185(C).
    10. Wang, Zhenshuang & Xie, Wanchen & Zhang, Chengyi, 2023. "Towards COP26 targets: Characteristics and influencing factors of spatial correlation network structure on U.S. carbon emission," Resources Policy, Elsevier, vol. 81(C).
    11. McCarthy, Patrick & Zhai, Zhe, 2019. "Economic impact analysis of GDOT short line railroad infrastructure investment in Georgia," Research in Transportation Economics, Elsevier, vol. 77(C).
    12. Woodburn, Allan, 2017. "The impacts on freight train operational performance of new rail infrastructure to segregate passenger and freight traffic," Journal of Transport Geography, Elsevier, vol. 58(C), pages 176-185.
    13. Shin, Eun Jin, 2023. "Decomposing neighborhood disparities in bicycle crashes: A Gelbach decomposition analysis," Transport Policy, Elsevier, vol. 131(C), pages 156-172.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:23:p:13097-:d:688509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.