IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i21p12104-d670678.html
   My bibliography  Save this article

Utilization of Industrial Byproducts for Enhancing the Properties of Cement Mortars at Elevated Temperatures

Author

Listed:
  • Vasiliki Pachta

    (Laboratory of Building Materials, School of Civil Engineering, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece)

  • Eleftherios K. Anastasiou

    (Laboratory of Building Materials, School of Civil Engineering, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece)

Abstract

The research on industrial byproducts, such as slags and fly ash, was intense during the last decades in the building sector. Apart from the environmental benefits coming from their exploitation, their application may lead to the production of cost effective and durable building materials, such as mortars and concrete. The impact of industrial byproducts on the resistance of materials to fire and elevated temperatures was assessed by many scientists, however, it is still an open field of research. In this study, locally available byproducts were investigated, including High Calcium Fly Ash (HCFA), coming from lignite-fired power plants, as well as Ladle Furnace Steel (LFS) slag and Electric Arc Furnace (EAF) slag aggregates, originating from the steel making industry. Six mortar compositions were manufactured with substitution of Ordinary Portland Cement (OPC) with HCFA and LFS slag (20% w/w ) and of natural aggregates with EAF slag (50% w/w ). At the age of 7, 28, and 90 days, the physico-mechanical properties of the specimens were recorded, while they were further exposed at elevated temperatures, concerning 200 °C, 400 °C, 600 °C, 800 °C, and 1000 °C. After each exposure, their physico-mechanical and microstructure characteristics were identified. From the evaluation of the results, it was asserted that HCFA and EAF slag aggregates enhanced the overall performance of mortars, especially up to 600 °C. LFS was beneficial only in combination with EAF slag aggregates.

Suggested Citation

  • Vasiliki Pachta & Eleftherios K. Anastasiou, 2021. "Utilization of Industrial Byproducts for Enhancing the Properties of Cement Mortars at Elevated Temperatures," Sustainability, MDPI, vol. 13(21), pages 1-17, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:12104-:d:670678
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/21/12104/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/21/12104/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. José Marcos Ortega & Rosa María Tremiño & Isidro Sánchez & Miguel Ángel Climent, 2018. "Effects of Environment in the Microstructure and Properties of Sustainable Mortars with Fly Ash and Slag after a 5-Year Exposure Period," Sustainability, MDPI, vol. 10(3), pages 1-20, March.
    2. Rosa Abnelia Rivera & Miguel Ángel Sanjuán & Domingo Alfonso Martín, 2020. "Granulated Blast-Furnace Slag and Coal Fly Ash Ternary Portland Cements Optimization," Sustainability, MDPI, vol. 12(14), pages 1-16, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mohammed K. H. Radwan & Chiu Chuen Onn & Kim Hung Mo & Soon Poh Yap & Ren Jie Chin & Sai Hin Lai, 2022. "Sustainable ternary cement blends with high-volume ground granulated blast furnace slag–fly ash," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4751-4785, April.
    2. Carlos Rodríguez & Isidro Sánchez & Isabel Miñano & Francisco Benito & Marta Cabeza & Carlos Parra, 2019. "On the Possibility of Using Recycled Mixed Aggregates and GICC Thermal Plant Wastes in Non-Structural Concrete Elements," Sustainability, MDPI, vol. 11(3), pages 1-19, January.
    3. Slobodan Šupić & Vesna Bulatović & Mirjana Malešev & Vlastimir Radonjanin & Ivan Lukić, 2021. "Sustainable Masonry Mortars with Fly Ash, Blast Furnace Granulated Slag and Wheat Straw Ash," Sustainability, MDPI, vol. 13(21), pages 1-18, November.
    4. Sara Yasipourtehrani & Vladimir Strezov & Tao Kan & Tim Evans, 2021. "Investigation of Dye Removal Capability of Blast Furnace Slag in Wastewater Treatment," Sustainability, MDPI, vol. 13(4), pages 1-17, February.
    5. Shazim Ali Memon & Israr Wahid & Muhammad Khizar Khan & Muhammad Ashraf Tanoli & Madina Bimaganbetova, 2018. "Environmentally Friendly Utilization of Wheat Straw Ash in Cement-Based Composites," Sustainability, MDPI, vol. 10(5), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:21:p:12104-:d:670678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.