IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i20p11373-d656623.html
   My bibliography  Save this article

Reverse Logistics Network Design and Simulation for Automatic Teller Machines Based on Carbon Emission and Economic Benefits: A Study of the Anhui Province ATMs Industry

Author

Listed:
  • Shouxu Song

    (School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China)

  • Yongting Tian

    (School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China)

  • Dan Zhou

    (School of Mechanical Engineering, Hefei University of Technology, Hefei 230009, China)

Abstract

In recent years, mobile payments have gradually replaced cash payments, resulting in a gradual decline in the number of automatic teller machines (ATMs) demanded by banks. Through investigation and analysis, we determine four means to deal with decommissioned ATMs, and construct thereafter an ATM reverse logistics (RL_ATMs) network model, which includes suppliers, producers, warehouses, operators, maintenance centers, collection and inspection centers, disposal centers, remanufacturing centers, and recycling centers. This model is further expressed as a mixed integer linear programming (MILP) model. Given that an ATM recycling network has planned and batched characteristics, a percentage diversion method is proposed to transform a real multi-cycle problem to a single-cycle problem. The RL_ATMs network constructed in this study presents the two forms of ATMs, functional modules and the entire machine. We used the actual situations of the related companies and enterprises in Anhui Province and its surrounding areas, as well as major banks’ ATMs, as bases in using the LINGO software to solve the proposed MILP model with the objective function of minimizing costs and environmental emissions, and obtain the relevant companies’ launch operations. Lastly, we analyzed the relationship between coefficients in the percentage diversion method and calculation results, cost, and carbon emissions. Accordingly, we find that the number of remanufacturing and maintenance centers has no evident impact on the objective function, transportation costs account for a large proportion of the total cost, and emissions tax is small.

Suggested Citation

  • Shouxu Song & Yongting Tian & Dan Zhou, 2021. "Reverse Logistics Network Design and Simulation for Automatic Teller Machines Based on Carbon Emission and Economic Benefits: A Study of the Anhui Province ATMs Industry," Sustainability, MDPI, vol. 13(20), pages 1-24, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:20:p:11373-:d:656623
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/20/11373/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/20/11373/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daqing Wu & Jiazhen Huo & Gefu Zhang & Weihua Zhang, 2018. "Minimization of Logistics Cost and Carbon Emissions Based on Quantum Particle Swarm Optimization," Sustainability, MDPI, vol. 10(10), pages 1-15, October.
    2. Gaur, Jighyasu & Amini, Mehdi & Rao, A.K., 2017. "Closed-loop supply chain configuration for new and reconditioned products: An integrated optimization model," Omega, Elsevier, vol. 66(PB), pages 212-223.
    3. Wei Sun & Yi Su, 2020. "Analysing Green Forward–Reverse Logistics with NSGA-II," Sustainability, MDPI, vol. 12(15), pages 1-18, July.
    4. Xuehong Gao, 2019. "A Novel Reverse Logistics Network Design Considering Multi-Level Investments for Facility Reconstruction with Environmental Considerations," Sustainability, MDPI, vol. 11(9), pages 1-22, May.
    5. Cruz-Rivera, Reynaldo & Ertel, Jürgen, 2009. "Reverse logistics network design for the collection of End-of-Life Vehicles in Mexico," European Journal of Operational Research, Elsevier, vol. 196(3), pages 930-939, August.
    6. Are Denstad & Einar Ulsund & Marielle Christiansen & Lars Magnus Hvattum & Gregorio Tirado, 2021. "Multi-objective optimization for a strategic ATM network redesign problem," Annals of Operations Research, Springer, vol. 296(1), pages 7-33, January.
    7. Hao Yu & Wei Deng Solvang, 2016. "A Stochastic Programming Approach with Improved Multi-Criteria Scenario-Based Solution Method for Sustainable Reverse Logistics Design of Waste Electrical and Electronic Equipment (WEEE)," Sustainability, MDPI, vol. 8(12), pages 1-28, December.
    8. Yigit Kazancoglu & Esra Ekinci & Sachin Kumar Mangla & Muruvvet Deniz Sezer & Yasanur Kayikci, 2021. "Performance evaluation of reverse logistics in food supply chains in a circular economy using system dynamics," Business Strategy and the Environment, Wiley Blackwell, vol. 30(1), pages 71-91, January.
    9. Fleischmann, Moritz & Bloemhof-Ruwaard, Jacqueline M. & Dekker, Rommert & van der Laan, Erwin & van Nunen, Jo A. E. E. & Van Wassenhove, Luk N., 1997. "Quantitative models for reverse logistics: A review," European Journal of Operational Research, Elsevier, vol. 103(1), pages 1-17, November.
    10. Vachon, Stephan & Klassen, Robert D., 2008. "Environmental management and manufacturing performance: The role of collaboration in the supply chain," International Journal of Production Economics, Elsevier, vol. 111(2), pages 299-315, February.
    11. Kannan, Devika & Diabat, Ali & Alrefaei, Mahmoud & Govindan, Kannan & Yong, Geng, 2012. "A carbon footprint based reverse logistics network design model," Resources, Conservation & Recycling, Elsevier, vol. 67(C), pages 75-79.
    12. Bandar Alkhayyal, 2019. "Corporate Social Responsibility Practices in the U.S.: Using Reverse Supply Chain Network Design and Optimization Considering Carbon Cost," Sustainability, MDPI, vol. 11(7), pages 1-22, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beste Desticioglu & Hatice Calipinar & Bahar Ozyoruk & Erdinc Koc, 2022. "Model for Reverse Logistic Problem of Recycling under Stochastic Demand," Sustainability, MDPI, vol. 14(8), pages 1-19, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gołębiewski, Bronisław & Trajer, Jędrzej & Jaros, Małgorzata & Winiczenko, Radosław, 2013. "Modelling of the location of vehicle recycling facilities: A case study in Poland," Resources, Conservation & Recycling, Elsevier, vol. 80(C), pages 10-20.
    2. Jahani, Hamed & Abbasi, Babak & Sheu, Jiuh-Biing & Klibi, Walid, 2024. "Supply chain network design with financial considerations: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 312(3), pages 799-839.
    3. Hao Yu & Xu Sun & Wei Deng Solvang & Xu Zhao, 2020. "Reverse Logistics Network Design for Effective Management of Medical Waste in Epidemic Outbreaks: Insights from the Coronavirus Disease 2019 (COVID-19) Outbreak in Wuhan (China)," IJERPH, MDPI, vol. 17(5), pages 1-25, March.
    4. Zhiguo Wang & Lufei Huang & Cici Xiao He, 2021. "A multi-objective and multi-period optimization model for urban healthcare waste’s reverse logistics network design," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 785-812, November.
    5. S. Maryam Masoumi & Nima Kazemi & Salwa Hanim Abdul-Rashid, 2019. "Sustainable Supply Chain Management in the Automotive Industry: A Process-Oriented Review," Sustainability, MDPI, vol. 11(14), pages 1-30, July.
    6. De Rosa, Vincenzo & Gebhard, Marina & Hartmann, Evi & Wollenweber, Jens, 2013. "Robust sustainable bi-directional logistics network design under uncertainty," International Journal of Production Economics, Elsevier, vol. 145(1), pages 184-198.
    7. Van Engeland, Jens & Beliën, Jeroen & De Boeck, Liesje & De Jaeger, Simon, 2020. "Literature review: Strategic network optimization models in waste reverse supply chains," Omega, Elsevier, vol. 91(C).
    8. Vidovic, Milorad & Dimitrijevic, Branka & Ratkovic, Branislava & Simic, Vladimir, 2011. "A novel covering approach to positioning ELV collection points," Resources, Conservation & Recycling, Elsevier, vol. 57(C), pages 1-9.
    9. Toso, Eli Angela V. & Alem, Douglas, 2014. "Effective location models for sorting recyclables in public management," European Journal of Operational Research, Elsevier, vol. 234(3), pages 839-860.
    10. Zhiguo Wang & Lufei Huang & Cici Xiao He, 0. "A multi-objective and multi-period optimization model for urban healthcare waste’s reverse logistics network design," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-28.
    11. Tahirov, Nail & Hasanov, Parviz & Jaber, Mohamad Y., 2016. "Optimization of closed-loop supply chain of multi-items with returned subassemblies," International Journal of Production Economics, Elsevier, vol. 174(C), pages 1-10.
    12. Muneeb, Syed Mohd & Asim, Zainab & Hajiaghaei-Keshteli, Mostafa & Abbas, Haidar, 2023. "A multi-objective integrated supplier selection-production-distribution model for re-furbished products: Towards a circular economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    13. Mahmoudzadeh, Mahdi & Mansour, Saeed & Karimi, Behrouz, 2013. "To develop a third-party reverse logistics network for end-of-life vehicles in Iran," Resources, Conservation & Recycling, Elsevier, vol. 78(C), pages 1-14.
    14. Denilson Ricardo de Lucena Nunes & Danyelle de Sousa Nascimento & Jennifer Rodrigues Matos & André Cristiano Silva Melo & Vitor William Batista Martins & Antônio Erlindo Braga, 2023. "Approaches to Performance Assessment in Reverse Supply Chains: A Systematic Literature Review," Logistics, MDPI, vol. 7(3), pages 1-15, June.
    15. Chandra Prakash Garg, 2020. "A robust hybrid decision model to evaluate critical factors of reverse logistics implementation using Grey-DEMATEL framework," OPSEARCH, Springer;Operational Research Society of India, vol. 57(3), pages 837-873, September.
    16. Agrawal, Saurabh & Singh, Rajesh K. & Murtaza, Qasim, 2015. "A literature review and perspectives in reverse logistics," Resources, Conservation & Recycling, Elsevier, vol. 97(C), pages 76-92.
    17. Diabat, Ali & Kannan, Devika & Kaliyan, Mathiyazhagan & Svetinovic, Davor, 2013. "An optimization model for product returns using genetic algorithms and artificial immune system," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 156-169.
    18. Sahar Porkar & Iraj Mahdavi & Behzad Maleki Vishkaei & Milad Hematian, 2020. "Green supply chain flow analysis with multi-attribute demand in a multi-period product development environment," Operational Research, Springer, vol. 20(3), pages 1405-1435, September.
    19. Olugu, Ezutah Udoncy & Wong, Kuan Yew & Shaharoun, Awaludin Mohamed, 2011. "Development of key performance measures for the automobile green supply chain," Resources, Conservation & Recycling, Elsevier, vol. 55(6), pages 567-579.
    20. Shuang Yao & Donghua Yu & Yan Song & Hao Yao & Yuzhen Hu & Benhai Guo, 2018. "Dry Bulk Carrier Investment Selection through a Dual Group Decision Fusing Mechanism in the Green Supply Chain," Sustainability, MDPI, vol. 10(12), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:20:p:11373-:d:656623. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.