IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i19p11034-d650257.html
   My bibliography  Save this article

Dark Fermentation Process Response to the Use of Undiluted Tequila Vinasse without Nutrient Supplementation

Author

Listed:
  • Juan José Rodríguez-Reyes

    (Department of Environmental Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara 44270, Mexico)

  • Octavio García-Depraect

    (Institute of Sustainable Processes, University of Valladolid, 47011 Valladolid, Spain)

  • Roberto Castro-Muñoz

    (Tecnologico de Monterrey, Campus Toluca, San Antonio Buenavista, Toluca de Lerdo 50110, Mexico
    Department of Process, Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, 80-233 Gdansk, Poland)

  • Elizabeth León-Becerril

    (Department of Environmental Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, Guadalajara 44270, Mexico)

Abstract

The technical feasibility of valorizing tequila vinasse (TV), a wastewater with high pollution potential, through the production of biogenic hydrogen via dark fermentation, has long been proven in diverse lab-scale reactors that were operated either in batch or continuous mode. However, such systems have mainly been tested with diluted streams and nutrient supplementation, hindering the techno-economic attractiveness of the TV-to-hydrogen concept at large scale. In this study, the feasibility of producing hydrogen from high-strength undiluted TV with no added extra nutrients was evaluated under batch mesophilic conditions. Additionally, the use of two different acidogenic inocula obtained either by heat or heat-aeration pretreatment was investigated to get a greater understanding of the effect of inoculum type on the process. The results obtained showed that the TV utilized herein contained macro- and micro-nutrients high enough to support the hydrogenogenic activity of both cultures, entailing average hydrogen yields of 2.4–2.6 NL H 2 /L vinasse and maximum hydrogen production rates of 1.4–1.9 NL H 2 /L-d. Interestingly, the consumption of lactate and acetate with the concomitant production of butyrate was observed as the main hydrogen-producing route regardless of the inoculum, pointing out the relevance of the lactate-driven dark fermentative process. Clostridium beijerinckii was ascertained as key bacteria, but only in association with microorganisms belonging to the genera Enterobacter and Klebsiella , as revealed by phylogenetic analyses.

Suggested Citation

  • Juan José Rodríguez-Reyes & Octavio García-Depraect & Roberto Castro-Muñoz & Elizabeth León-Becerril, 2021. "Dark Fermentation Process Response to the Use of Undiluted Tequila Vinasse without Nutrient Supplementation," Sustainability, MDPI, vol. 13(19), pages 1-14, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:11034-:d:650257
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/19/11034/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/19/11034/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fuess, Lucas Tadeu & dos Santos, Graciete Mary & Delforno, Tiago Palladino & de Souza Moraes, Bruna & da Silva, Ariovaldo José, 2020. "Biochemical butyrate production via dark fermentation as an energetically efficient alternative management approach for vinasse in sugarcane biorefineries," Renewable Energy, Elsevier, vol. 158(C), pages 3-12.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fuess, L.T. & Cruz, R.B.C.M. & Zaiat, M. & Nascimento, C.A.O., 2021. "Diversifying the portfolio of sugarcane biorefineries: Anaerobic digestion as the core process for enhanced resource recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    2. Aarón Montiel-Rosales & Nayeli Montalvo-Romero & Luis Enrique García-Santamaría & Luis Carlos Sandoval-Herazo & Horacio Bautista-Santos & Gregorio Fernández-Lambert, 2022. "Post-Industrial Use of Sugarcane Ethanol Vinasse: A Systematic Review," Sustainability, MDPI, vol. 14(18), pages 1-25, September.
    3. Guilherme Peixoto & Gustavo Mockaitis & Wojtyla Kmiecik Moreira & Daniel Moureira Fontes Lima & Marisa Aparecida de Lima & Filipe Vasconcelos Ferreira & Lucas Tadeu Fuess & Igor Polikarpov & Marcelo Z, 2023. "Acidogenesis of Pentose Liquor to Produce Biohydrogen and Organic Acids Integrated with 1G–2G Ethanol Production in Sugarcane Biorefineries," Waste, MDPI, vol. 1(3), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:19:p:11034-:d:650257. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.