IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i16p9342-d618043.html
   My bibliography  Save this article

Earthquake Response Modeling of Corroded Reinforced Concrete Hollow-Section Piers via Simplified Fiber-Based FE Analysis

Author

Listed:
  • Nicola Scattarreggia

    (University School for Advanced Studies (IUSS), 27100 Pavia, Italy)

  • Tianyue Qiao

    (Department of Civil Engineering, McGill University, Montréal, QC H3A 0C3, Canada)

  • Daniele Malomo

    (Department of Civil Engineering, McGill University, Montréal, QC H3A 0C3, Canada)

Abstract

The effect of corrosion-induced damage on the seismic response of reinforced concrete (RC) circular bridge piers has been extensively investigated in the last decade, both experimentally and numerically. Contrarily, only limited research is presently available on hollow-section members, largely employed worldwide and intrinsically more vulnerable to corrosion attacks. In this paper, fiber-based finite element (FB-FEM) models, typically the preferred choice by practitioners given their reduced computational expense, are validated against previous shake-table and quasi-static cyclic tests on hollow-section RC columns, and then used to investigate the influence of corrosion-induced damage. To this end, modeling strategies of varying complexity are used, including artificial reduction of steel rebar diameter, yield strength and ductility, as well as that of concrete compressive strength to simulate cover loss, and ensuing dissimilarities quantified. Pushover and incremental dynamic analyses are conducted to explore impacts on collapse behavior, extending experimental results while accounting for multiple corrosion rates. Produced outcomes indicate a minimal influence of cover loss; substantial reductions of base shear (up to 37%) and ultimate displacement capacity (up to 50%) were observed, instead, when introducing relevant levels of deterioration due to corrosion (i.e., 30% rebar mass loss). Its predicted impact is generally lower when considering more simplified assumptions, which may thus yield non-conservative predictions.

Suggested Citation

  • Nicola Scattarreggia & Tianyue Qiao & Daniele Malomo, 2021. "Earthquake Response Modeling of Corroded Reinforced Concrete Hollow-Section Piers via Simplified Fiber-Based FE Analysis," Sustainability, MDPI, vol. 13(16), pages 1-12, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:9342-:d:618043
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/16/9342/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/16/9342/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ji-Shuang Tan & Khalid Elbaz & Zhi-Feng Wang & Jack Shui Shen & Jun Chen, 2020. "Lessons Learnt from Bridge Collapse: A View of Sustainable Management," Sustainability, MDPI, vol. 12(3), pages 1-16, February.
    2. Olmstead, Sheila M., 2014. "Climate change adaptation and water resource management: A review of the literature," Energy Economics, Elsevier, vol. 46(C), pages 500-509.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao Xu & Qiyuan Li & Dongcai Li & Haonan Jiang & Tong Wang & Qingfei Gao, 2023. "Experimental and Numerical Investigation of the Anti-Overturning Theory of Single-Column Pier Bridges," Sustainability, MDPI, vol. 15(2), pages 1-23, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maria Iglesias-Mendoza & Akilu Yunusa-Kaltungo & Sara Hadleigh-Dunn & Ashraf Labib, 2021. "Learning How to Learn from Disasters through a Comparative Dichotomy Analysis: Grenfell Tower and Hurricane Katrina Case Studies," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    2. Papadaskalopoulou, C. & Katsou, E. & Valta, K. & Moustakas, K. & Malamis, D. & Dodou, M., 2015. "Review and assessment of the adaptive capacity of the water sector in Cyprus against climate change impacts on water availability," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 95-112.
    3. Maria-Floriana Popescu, 2015. "The Energy Issues: A Corpus-Based Analysis," Romanian Economic Journal, Department of International Business and Economics from the Academy of Economic Studies Bucharest, vol. 18(56), pages 147-167, June,.
    4. Dan Su & Yi-Sheng Liu & Xin-Tong Li & Xiao-Yan Chen & Dong-Han Li, 2020. "Management Path of Concrete Beam Bridge in China from the Perspective of Sustainable Development," Sustainability, MDPI, vol. 12(17), pages 1-22, September.
    5. repec:ags:aaea16:236373 is not listed on IDEAS
    6. Livia Rasche & Uwe A. Schneider & Martha Bolívar Lobato & Ruth Sos Del Diego & Tobias Stacke, 2018. "Benefits of Coordinated Water Resource System Planning in the Cauca-Magdalena River Basin," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-27, January.
    7. Chelangat W & Mulinya C. & J.Mabonga, 2022. "Seasonal agricultural drought effects on small scale farmers crop production in Kakamega South Sub-county," International Journal of Research and Innovation in Social Science, International Journal of Research and Innovation in Social Science (IJRISS), vol. 6(5), pages 218-221, May.
    8. Simi Goyol & Chaminda Pathirage, 2018. "Farmers Perceptions of Climate Change Related Events in Shendam and Riyom, Nigeria," Economies, MDPI, vol. 6(4), pages 1-26, December.
    9. Lee, Gi-Eu & Chou, Chang-Erh, 2020. "The Ex Ante Price Information Effect on Water Conservation: A Case Study of Taipei’s Water Tariff Adjustment," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304253, Agricultural and Applied Economics Association.
    10. Peyman Arjomandi A. & Masoud Yazdanpanah & Akbar Shirzad & Nadejda Komendantova & Erfan Kameli & Mahdi Hosseinzadeh & Erfan Razavi, 2023. "Institutional Trust and Cognitive Motivation toward Water Conservation in the Face of an Environmental Disaster," Sustainability, MDPI, vol. 15(2), pages 1-21, January.
    11. Taís Maria Nunes Carvalho & Francisco Souza Filho, 2021. "Variational Mode Decomposition Hybridized With Gradient Boost Regression for Seasonal Forecast of Residential Water Demand," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(10), pages 3431-3445, August.
    12. Patro, Epari Ritesh & De Michele, Carlo & Avanzi, Francesco, 2018. "Future perspectives of run-of-the-river hydropower and the impact of glaciers’ shrinkage: The case of Italian Alps," Applied Energy, Elsevier, vol. 231(C), pages 699-713.
    13. Florian Klopfer & René Westerholt & Dietwald Gruehn, 2021. "Conceptual Frameworks for Assessing Climate Change Effects on Urban Areas: A Scoping Review," Sustainability, MDPI, vol. 13(19), pages 1-18, September.
    14. Carla Ximena Salinas & Jorge Gironás & Miriam Pinto, 2016. "Water security as a challenge for the sustainability of La Serena-Coquimbo conurbation in northern Chile: global perspectives and adaptation," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 21(8), pages 1235-1246, December.
    15. Pakmehr, Sedighe & Yazdanpanah, Masoud & Baradaran, Masoud, 2020. "How collective efficacy makes a difference in responses to water shortage due to climate change in southwest Iran," Land Use Policy, Elsevier, vol. 99(C).
    16. Burns,Andrew,Jooste,Charl,Schwerhoff,Gregor, 2021. "Climate Modeling for Macroeconomic Policy : A Case Study for Pakistan," Policy Research Working Paper Series 9780, The World Bank.
    17. Rimsaite, Renata & Fisher-Vanden, Karen A. & Olmstead, Sheila M., 2016. "Price Efficiency in U.S. Water Rights Markets," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 243124, Agricultural and Applied Economics Association.
    18. Robert P. Gilles & Lina Mallozzi & Roberta Messalli, 2023. "Emergent Collaboration in Social Purpose Games," Dynamic Games and Applications, Springer, vol. 13(2), pages 566-588, June.
    19. Jing Liu & Thomas Hertel & Farzad Taheripour, 2016. "Analyzing Future Water Scarcity in Computable General Equilibrium Models," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 2(04), pages 1-30, December.
    20. Eyer, Jonathan & Wichman, Casey J., 2018. "Does water scarcity shift the electricity generation mix toward fossil fuels? Empirical evidence from the United States," Journal of Environmental Economics and Management, Elsevier, vol. 87(C), pages 224-241.
    21. Hou, Shuhua & Xu, Jiuping & Yao, Liming, 2021. "Integrated environmental policy instruments driven river water pollution management decision system," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:9342-:d:618043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.