IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i16p9340-d618024.html
   My bibliography  Save this article

A Unique Unified Wind Speed Approach to Decision-Making for Dispersed Locations

Author

Listed:
  • Ayman M. Mansour

    (Department of Communication, Electronics and Computer Engineering, Tafila Technical University, Tafila 66110, Jordan)

  • Abdulaziz Almutairi

    (Department of Electrical Engineering, College of Engineering, Majmaah University, Al-Majmaah 11952, Saudi Arabia)

  • Saeed Alyami

    (Department of Electrical Engineering, College of Engineering, Majmaah University, Al-Majmaah 11952, Saudi Arabia)

  • Mohammad A. Obeidat

    (Department of Electrical Power and Mechatronics Engineering, Tafila Technical University, Tafilah 66110, Jordan)

  • Dhafer Almkahles

    (Renewable Energy Lab, Prince Sultan University, Riyadh 12435, Saudi Arabia)

  • Jagabar Sathik

    (Renewable Energy Lab, Prince Sultan University, Riyadh 12435, Saudi Arabia)

Abstract

The repercussions of high levels of environmental pollution coupled with the low reserves and increased costs of traditional energy sources have led to the widespread adaptation of wind energy worldwide. However, the expanded use of wind energy is accompanied by major challenges for electric grid operators due to the difficulty of controlling and forecasting the production of wind energy. The development of methods for addressing these problems has therefore attracted the interest of numerous researchers. This paper presents an innovative method for assessing wind speed in different and widely spaced locations. The new method uses wind speed data from multiple sites as a single package that preserves the characteristics of the correlations among those sites. Powerful Waikato Environment for Knowledge Analysis (Weka) machine learning software has been employed for supporting data preprocessing, clustering, classification, visualization, and feature selection and for using a standard algorithm to construct decision trees according to a training set. The resultant arrangement of the sites according to likely wind energy productivity facilitates enhanced decisions related to the potential for the effective operation of wind energy farms at the sites. The proposed method is anticipated to provide network operators with an understanding of the possible productivity of each site, thus facilitating their optimal management of network operations. The results are also expected to benefit investors interested in establishing profitable projects at those locations.

Suggested Citation

  • Ayman M. Mansour & Abdulaziz Almutairi & Saeed Alyami & Mohammad A. Obeidat & Dhafer Almkahles & Jagabar Sathik, 2021. "A Unique Unified Wind Speed Approach to Decision-Making for Dispersed Locations," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:9340-:d:618024
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/16/9340/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/16/9340/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sun, Mucun & Feng, Cong & Zhang, Jie, 2019. "Conditional aggregated probabilistic wind power forecasting based on spatio-temporal correlation," Applied Energy, Elsevier, vol. 256(C).
    2. Baseer, M.A. & Meyer, J.P. & Rehman, S. & Alam, Md. Mahbub, 2017. "Wind power characteristics of seven data collection sites in Jubail, Saudi Arabia using Weibull parameters," Renewable Energy, Elsevier, vol. 102(PA), pages 35-49.
    3. Almonacid, F. & Rus, C. & Hontoria, L. & Muñoz, F.J., 2010. "Characterisation of PV CIS module by artificial neural networks. A comparative study with other methods," Renewable Energy, Elsevier, vol. 35(5), pages 973-980.
    4. Georgilakis, Pavlos S., 2008. "Technical challenges associated with the integration of wind power into power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(3), pages 852-863, April.
    5. Rehman, S & Halawani, T.O & Mohandes, M, 2003. "Wind power cost assessment at twenty locations in the kingdom of Saudi Arabia," Renewable Energy, Elsevier, vol. 28(4), pages 573-583.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jungmin An & Dong-Kwan Kim & Jinyeong Lee & Sung-Kwan Joo, 2021. "Least Squares Monte Carlo Simulation-Based Decision-Making Method for Photovoltaic Investment in Korea," Sustainability, MDPI, vol. 13(19), pages 1-14, September.
    2. Antonio Lorenzo-Espejo & Alejandro Escudero-Santana & María-Luisa Muñoz-Díaz & Alicia Robles-Velasco, 2022. "Machine Learning-Based Analysis of a Wind Turbine Manufacturing Operation: A Case Study," Sustainability, MDPI, vol. 14(13), pages 1-25, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yahya Z. Alharthi & Mahbube K. Siddiki & Ghulam M. Chaudhry, 2018. "Resource Assessment and Techno-Economic Analysis of a Grid-Connected Solar PV-Wind Hybrid System for Different Locations in Saudi Arabia," Sustainability, MDPI, vol. 10(10), pages 1-22, October.
    2. Hughes, Larry, 2010. "Meeting residential space heating demand with wind-generated electricity," Renewable Energy, Elsevier, vol. 35(8), pages 1765-1772.
    3. Fazelpour, Farivar & Markarian, Elin & Soltani, Nima, 2017. "Wind energy potential and economic assessment of four locations in Sistan and Balouchestan province in Iran," Renewable Energy, Elsevier, vol. 109(C), pages 646-667.
    4. Bell, William Paul & Zheng, Xuemei, 2018. "Inclusive growth and climate change adaptation and mitigation in Australia and China : Removing barriers to solving wicked problems," MPRA Paper 84509, University Library of Munich, Germany.
    5. Ahmed, R. & Sreeram, V. & Mishra, Y. & Arif, M.D., 2020. "A review and evaluation of the state-of-the-art in PV solar power forecasting: Techniques and optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    6. Da Liu & Shou-Kai Wang & Jin-Chen Liu & Han Huang & Xing-Ping Zhang & Yi Feng & Wei-Jun Wang, 2017. "Optimum Subsidy to Promote Electric Boiler Investment to Accommodate Wind Power," Sustainability, MDPI, vol. 9(6), pages 1-11, May.
    7. Díaz-González, Francisco & Sumper, Andreas & Gomis-Bellmunt, Oriol & Villafáfila-Robles, Roberto, 2012. "A review of energy storage technologies for wind power applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2154-2171.
    8. Rahman, Syed Masiur & Khondaker, A.N., 2012. "Mitigation measures to reduce greenhouse gas emissions and enhance carbon capture and storage in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2446-2460.
    9. Rabiee, Abdorreza & Khorramdel, Hossein & Aghaei, Jamshid, 2013. "A review of energy storage systems in microgrids with wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 316-326.
    10. William Paul Bell & John Foster, 2017. "Using solar PV feed-in tariff policy history to inform a sustainable flexible pricing regime to enhance the diffusion of energy storage and electric vehicles," Journal of Bioeconomics, Springer, vol. 19(1), pages 127-145, April.
    11. Lewis, Matt & McNaughton, James & Márquez-Dominguez, Concha & Todeschini, Grazia & Togneri, Michael & Masters, Ian & Allmark, Matthew & Stallard, Tim & Neill, Simon & Goward-Brown, Alice & Robins, Pet, 2019. "Power variability of tidal-stream energy and implications for electricity supply," Energy, Elsevier, vol. 183(C), pages 1061-1074.
    12. Mazhar H. Baloch & Safdar A. Abro & Ghulam Sarwar Kaloi & Nayyar H. Mirjat & Sohaib Tahir & M. Haroon Nadeem & Mehr Gul & Zubair A. Memon & Mahendar Kumar, 2017. "A Research on Electricity Generation from Wind Corridors of Pakistan (Two Provinces): A Technical Proposal for Remote Zones," Sustainability, MDPI, vol. 9(9), pages 1-31, September.
    13. Jingpeng Yue & Zhijian Hu & Amjad Anvari-Moghaddam & Josep M. Guerrero, 2019. "A Multi-Market-Driven Approach to Energy Scheduling of Smart Microgrids in Distribution Networks," Sustainability, MDPI, vol. 11(2), pages 1-16, January.
    14. Le, Ngoc Anh & Bhattacharyya, Subhes C., 2011. "Integration of wind power into the British system in 2020," Energy, Elsevier, vol. 36(10), pages 5975-5983.
    15. Jia, Mengshuo & Huang, Shaowei & Wang, Zhiwen & Shen, Chen, 2021. "Privacy-preserving distributed parameter estimation for probability distribution of wind power forecast error," Renewable Energy, Elsevier, vol. 163(C), pages 1318-1332.
    16. Yasir Ahmed Solangi & Qingmei Tan & Muhammad Waris Ali Khan & Nayyar Hussain Mirjat & Ifzal Ahmed, 2018. "The Selection of Wind Power Project Location in the Southeastern Corridor of Pakistan: A Factor Analysis, AHP, and Fuzzy-TOPSIS Application," Energies, MDPI, vol. 11(8), pages 1-26, July.
    17. Höltinger, Stefan & Salak, Boris & Schauppenlehner, Thomas & Scherhaufer, Patrick & Schmidt, Johannes, 2016. "Austria's wind energy potential – A participatory modeling approach to assess socio-political and market acceptance," Energy Policy, Elsevier, vol. 98(C), pages 49-61.
    18. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    19. Guerrero-Rodríguez, N.F. & Rey-Boué, Alexis B. & Herrero-de Lucas, Luis C. & Martinez-Rodrigo, Fernando, 2015. "Control and synchronization algorithms for a grid-connected photovoltaic system under harmonic distortions, frequency variations and unbalances," Renewable Energy, Elsevier, vol. 80(C), pages 380-395.
    20. Almonacid, F. & Rus, C. & Pérez-Higueras, P. & Hontoria, L., 2011. "Calculation of the energy provided by a PV generator. Comparative study: Conventional methods vs. artificial neural networks," Energy, Elsevier, vol. 36(1), pages 375-384.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:16:p:9340-:d:618024. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.