IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i15p8229-d599926.html
   My bibliography  Save this article

Shear Bond between Ultra-High Performance Fibre Reinforced Concrete Overlays and Normal Strength Concrete Substrates

Author

Listed:
  • Sara Javidmehr

    (iBMB, Division of Concrete Construction of TU Braunschweig, D-38106 Braunschweig, Germany)

  • Martin Empelmann

    (iBMB, Division of Concrete Construction of TU Braunschweig, D-38106 Braunschweig, Germany)

Abstract

Strengthening or retrofitting of existing structures is a more sustainable and resource-efficient solution than replacing them with new constructions. To enhance the performance and effectiveness of strengthening works the use of high-performance materials is a promising method. Using ultra-high performance fibre reinforced concrete (UHPFRC) as supplementary concrete is one of such solutions leading to high structural resistance and better durability. For such UHPFRC overlays the shear bond resistance of the interface between the existing substrate, usually normal strength concrete (NSC), and the UHPFRC is a significant design aspect. This paper presents the results of push-off tests conducted on NSC-UHPFRC specimens, which were produced with different substrate treatment methods. Using different surface measurement techniques including the sand patch method and digital microscopy, the effects of substrate roughness and treatment method on shear bond behaviour and failure mechanisms are investigated, and the results are analysed with design approaches and further calculation models in the technical literature. Based on the results, the significance of considering roughness parameters and failure mode for the design of high-performance overlays is highlighted. Furthermore, the effectiveness of different substrate treatment methods is discussed and an effective treatment method is suggested.

Suggested Citation

  • Sara Javidmehr & Martin Empelmann, 2021. "Shear Bond between Ultra-High Performance Fibre Reinforced Concrete Overlays and Normal Strength Concrete Substrates," Sustainability, MDPI, vol. 13(15), pages 1-19, July.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8229-:d:599926
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/15/8229/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/15/8229/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fausto Minelli & Enzo Martinelli & Luca Facconi, 2021. "Innovative Structural Applications of High Performance Concrete Materials in Sustainable Construction," Sustainability, MDPI, vol. 13(22), pages 1-2, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:15:p:8229-:d:599926. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.