IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i12p6953-d578731.html
   My bibliography  Save this article

Power System Transient Stability Assessment Based on Snapshot Ensemble LSTM Network

Author

Listed:
  • Yixing Du

    (School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

  • Zhijian Hu

    (School of Electrical Engineering and Automation, Wuhan University, Wuhan 430072, China)

Abstract

Data-driven methods using synchrophasor measurements have a broad application prospect in Transient Stability Assessment (TSA). Most previous studies only focused on predicting whether the power system is stable or not after disturbance, which lacked a quantitative analysis of the risk of transient stability. Therefore, this paper proposes a two-stage power system TSA method based on snapshot ensemble long short-term memory (LSTM) network. This method can efficiently build an ensemble model through a single training process, and employ the disturbed trajectory measurements as the inputs, which can realize rapid end-to-end TSA. In the first stage, dynamic hierarchical assessment is carried out through the classifier, so as to screen out credible samples step by step. In the second stage, the regressor is used to predict the transient stability margin of the credible stable samples and the undetermined samples, and combined with the built risk function to realize the risk quantification of transient angle stability. Furthermore, by modifying the loss function of the model, it effectively overcomes sample imbalance and overlapping. The simulation results show that the proposed method can not only accurately predict binary information representing transient stability status of samples, but also reasonably reflect the transient safety risk level of power systems, providing reliable reference for the subsequent control.

Suggested Citation

  • Yixing Du & Zhijian Hu, 2021. "Power System Transient Stability Assessment Based on Snapshot Ensemble LSTM Network," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6953-:d:578731
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/12/6953/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/12/6953/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ruoyu Zhang & Junyong Wu & Yan Xu & Baoqin Li & Meiyang Shao, 2019. "A Hierarchical Self-Adaptive Method for Post-Disturbance Transient Stability Assessment of Power Systems Using an Integrated CNN-Based Ensemble Classifier," Energies, MDPI, vol. 12(17), pages 1-20, August.
    2. Yanzhen Zhou & Junyong Wu & Zhihong Yu & Luyu Ji & Liangliang Hao, 2016. "A Hierarchical Method for Transient Stability Prediction of Power Systems Using the Confidence of a SVM-Based Ensemble Classifier," Energies, MDPI, vol. 9(10), pages 1-20, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhen Chen & Xiaoyan Han & Chengwei Fan & Tianwen Zheng & Shengwei Mei, 2019. "A Two-Stage Feature Selection Method for Power System Transient Stability Status Prediction," Energies, MDPI, vol. 12(4), pages 1-15, February.
    2. Qiufang Zhang & Zheng Shi & Ying Wang & Jinghan He & Yin Xu & Meng Li, 2020. "Security Assessment and Coordinated Emergency Control Strategy for Power Systems with Multi-Infeed HVDCs," Energies, MDPI, vol. 13(12), pages 1-21, June.
    3. Dan Huang & Qiyu Chen & Shiying Ma & Yichi Zhang & Shuyong Chen, 2018. "Wide-Area Measurement—Based Model-Free Approach for Online Power System Transient Stability Assessment," Energies, MDPI, vol. 11(4), pages 1-20, April.
    4. Renchu Guan & Aoqing Wang & Yanchun Liang & Jiasheng Fu & Xiaosong Han, 2022. "International Natural Gas Price Trends Prediction with Historical Prices and Related News," Energies, MDPI, vol. 15(10), pages 1-14, May.
    5. Ruoyu Zhang & Junyong Wu & Yan Xu & Baoqin Li & Meiyang Shao, 2019. "A Hierarchical Self-Adaptive Method for Post-Disturbance Transient Stability Assessment of Power Systems Using an Integrated CNN-Based Ensemble Classifier," Energies, MDPI, vol. 12(17), pages 1-20, August.
    6. Yi Tang & Feng Li & Chenyi Zheng & Qi Wang & Yingjun Wu, 2018. "PMU Measurement-Based Intelligent Strategy for Power System Controlled Islanding," Energies, MDPI, vol. 11(1), pages 1-15, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:12:p:6953-:d:578731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.