IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i11p6241-d567042.html
   My bibliography  Save this article

A Holistic Assessment of Construction and Demolition Waste Management in the Nigerian Construction Projects

Author

Listed:
  • Ademilade Aboginije

    (School of Civil Engineering and the Built Environment, University of Johannesburg, Johannesburg 2092, South Africa)

  • Clinton Aigbavboa

    (Department of Construction Management and Quantity Surveying, Doornfontein Campus, Johannesburg 2028, South Africa
    Sustainable Human Settlement and Construction Research Centre, House No 6, Research Village, Bunting Road Campus, University of Johannesburg, Johannesburg 2001, South Africa)

  • Wellington Thwala

    (Department of Construction Management and Quantity Surveying, Doornfontein Campus, Johannesburg 2028, South Africa)

Abstract

This study provides a holistic assessment of the current waste management strategies implemented in Nigerian construction projects. The data used in this study were collected from both primary and secondary sources. The primary data were collected through survey questionnaires distributed via emails of the targeted respondents who are construction professionals in the study area of Lagos metropolis, while the secondary data were collected via the review of related literature. Out of the 200 questionnaires distributed, only 168 valid forms were retrieved. The collected data accounted for 84% of the entire survey and were suitable for the analysis. An exploratory factor analysis was conducted while the reliability of the research survey instrument was tested using Cronbach’s alpha coefficient reliability. The result indicated that the waste management strategies were clustered into three groups, comprising practical legal framework and modular construction, sustainable procurement and material optimisation, and proper construction detailing and design. In conclusion, the waste management strategies implemented in Nigeria were assessed as being “not sustainable enough”. However, it is recommended that there is an upgrading in either the approach or method of application of waste management strategies in order to ensure its sustainability.

Suggested Citation

  • Ademilade Aboginije & Clinton Aigbavboa & Wellington Thwala, 2021. "A Holistic Assessment of Construction and Demolition Waste Management in the Nigerian Construction Projects," Sustainability, MDPI, vol. 13(11), pages 1-14, June.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6241-:d:567042
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/11/6241/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/11/6241/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Junhan Huang & Rui Zhao & Tao Huang & Xiaoqian Wang & Ming-Lang Tseng, 2018. "Sustainable Municipal Solid Waste Disposal in the Belt and Road Initiative: A Preliminary Proposal for Chengdu City," Sustainability, MDPI, vol. 10(4), pages 1-15, April.
    2. C. S. Poon & Ann Yu & L. Jaillon, 2004. "Reducing building waste at construction sites in Hong Kong," Construction Management and Economics, Taylor & Francis Journals, vol. 22(5), pages 461-470.
    3. Sunday Julius Odediran & Busayo Funmilola ADEYINKA & Oladele Ayinde OPATUNJI & Kolawole Opeyemi MORAKINYO, 2012. "Business Structure of Indigenous Firms in the Nigerian Construction Industry," International Journal of Business Research and Management (IJBRM), Computer Science Journals (CSC Journals), vol. 3(5), pages 255-264, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xueguo Xu & Tingting Xu & Meizeng Gui, 2020. "Incentive Mechanism for Municipal Solid Waste Disposal PPP Projects in China," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    2. Chengpeng Lu & Xiaoli Pan & Xingpeng Chen & Jinhuang Mao & Jiaxing Pang & Bing Xue, 2021. "Modeling of Waste Flow in Industrial Symbiosis System at City-Region Level: A Case Study of Jinchang, China," Sustainability, MDPI, vol. 13(2), pages 1-17, January.
    3. Benson Teck Heng Lim & Bee Lan Oo & Charlie McLeod & Pengqi Yang, 2024. "Institutional and Actor Network Perspectives of Waste Management in Australia: Is the Construction Industry Prepared for a Circular Economy?," Sustainability, MDPI, vol. 16(2), pages 1-21, January.
    4. Esa, Mohd Reza & Halog, Anthony & Rigamonti, Lucia, 2017. "Strategies for minimizing construction and demolition wastes in Malaysia," Resources, Conservation & Recycling, Elsevier, vol. 120(C), pages 219-229.
    5. Cédric Mpié Simba & Emmanuel Lemelin, 2024. "Spatio-Temporal Analysis of Resources and Waste Quantities from Buildings (as Urban Mining Potential) Generated by the European Metropolis of Lille: A Methodology Coupling Data from Construction and D," Resources, MDPI, vol. 13(6), pages 1-22, June.
    6. Wang, Jiayuan & Li, Zhengdao & Tam, Vivian W.Y., 2014. "Critical factors in effective construction waste minimization at the design stage: A Shenzhen case study, China," Resources, Conservation & Recycling, Elsevier, vol. 82(C), pages 1-7.
    7. Rosaria E.C. Amaral & Joel Brito & Matt Buckman & Elicia Drake & Esther Ilatova & Paige Rice & Carlos Sabbagh & Sergei Voronkin & Yewande S. Abraham, 2020. "Waste Management and Operational Energy for Sustainable Buildings: A Review," Sustainability, MDPI, vol. 12(13), pages 1-21, July.
    8. Baldwin, Andrew & Poon, Chi-Sun & Shen, Li-Yin & Austin, Simon & Wong, Irene, 2009. "Designing out waste in high-rise residential buildings: Analysis of precasting methods and traditional construction," Renewable Energy, Elsevier, vol. 34(9), pages 2067-2073.
    9. R. Navon & O. Berkovich, 2006. "An automated model for materials management and control," Construction Management and Economics, Taylor & Francis Journals, vol. 24(6), pages 635-646.
    10. Lu, Weisheng & Yuan, Hongping, 2010. "Exploring critical success factors for waste management in construction projects of China," Resources, Conservation & Recycling, Elsevier, vol. 55(2), pages 201-208.
    11. Lanfang, Liu & Issam, Srour & Chong, Wai K. & Christopher, Hermreck, 2015. "Integrating G2G, C2C and resource flow analysis into life cycle assessment framework: A case of construction steel’s resource loop," Resources, Conservation & Recycling, Elsevier, vol. 102(C), pages 143-152.
    12. Li, Jingru & Ding, Zhikun & Mi, Xuming & Wang, Jiayuan, 2013. "A model for estimating construction waste generation index for building project in China," Resources, Conservation & Recycling, Elsevier, vol. 74(C), pages 20-26.
    13. Li, Jingru & Tam, Vivian W.Y. & Zuo, Jian & Zhu, Jiaolan, 2015. "Designers’ attitude and behaviour towards construction waste minimization by design: A study in Shenzhen, China," Resources, Conservation & Recycling, Elsevier, vol. 105(PA), pages 29-35.
    14. Mok, Ken L. & Han, Seung H. & Choi, Seokjin, 2014. "The implementation of clean development mechanism (CDM) in the construction and built environment industry," Energy Policy, Elsevier, vol. 65(C), pages 512-523.
    15. Niluka Domingo & Heshani M. Edirisinghe & Ravindu Kahandawa & Gayan Wedawatta, 2024. "Generalised Linear Modelling for Construction Waste Estimation in Residential Projects: Case Study in New Zealand," Sustainability, MDPI, vol. 16(5), pages 1-14, February.
    16. Seungho Cho & Seunguk Na, 2017. "The Reduction of CO 2 Emissions by Application of High-Strength Reinforcing Bars to Three Different Structural Systems in South Korea," Sustainability, MDPI, vol. 9(9), pages 1-24, September.
    17. Ionica Oncioiu & Sorinel Căpuşneanu & Dan Ioan Topor & Marius Petrescu & Anca-Gabriela Petrescu & Monica Ioana Toader, 2020. "The Effective Management of Organic Waste Policy in Albania," Energies, MDPI, vol. 13(16), pages 1-16, August.
    18. Musa Mohammed & Nasir Shafiq & Ali Elmansoury & Al-Baraa Abdulrahman Al-Mekhlafi & Ehab Farouk Rached & Noor Amila Zawawi & Abdulrahman Haruna & Aminu Darda’u Rafindadi & Muhammad Bello Ibrahim, 2021. "Modeling of 3R (Reduce, Reuse and Recycle) for Sustainable Construction Waste Reduction: A Partial Least Squares Structural Equation Modeling (PLS-SEM)," Sustainability, MDPI, vol. 13(19), pages 1-22, September.
    19. Chau, C.K. & Hui, W.K. & Ng, W.Y. & Powell, G., 2012. "Assessment of CO2 emissions reduction in high-rise concrete office buildings using different material use options," Resources, Conservation & Recycling, Elsevier, vol. 61(C), pages 22-34.
    20. Li, Mei & Yang, Jay, 2014. "Critical factors for waste management in office building retrofit projects in Australia," Resources, Conservation & Recycling, Elsevier, vol. 93(C), pages 85-98.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:6241-:d:567042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.