IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i11p5984-d562425.html
   My bibliography  Save this article

Building Retrofitting System Based on Bamboo-Steel Hybrid Exoskeleton Structures: A Case Study

Author

Listed:
  • Vittoria F. Parrella

    (DICAM, Alma Mater Studiorum—Università di Bologna, Viale Risorgimento, 2 40136 Bologna, Italy)

  • Luisa Molari

    (DICAM, Alma Mater Studiorum—Università di Bologna, Viale Risorgimento, 2 40136 Bologna, Italy)

Abstract

The building heritage of many seismic regions worldwide is largely substandard and seismically deficient and would require seismic retrofitting interventions. The use of natural materials with low embedded emissions could lead to a low carbon footprint of the retrofitting intervention. In this perspective, an innovative structural sustainable retrofitting system is proposed consisting of a hybrid steel–bamboo reticular bracing system. Through a preliminary two-dimensional analysis, the capabilities of the system are assessed by varying the size and the number of the culms and inserting engineered bamboo and steel rods. Considering the constraints posed by the openings, a structure that uses steel in the first inter-storey and bamboo in the others is proposed to obtain a significative improvement of mechanical performances. The spatial behaviour of this structure is studied through a three-dimensional numerical model. The seismic analyses show that the exoskeleton structure when conveniently anchored allows to achieve an effective displacement and deformation control on the primary structure, as well as a reduction of its internal forces. The results of the presented work may provide useful preliminary insights. Further research effort is needed to generalize the results to different seismic zones. The proposed seismic retrofitting system could be easily integrated with a thermal coat to also enhance energy saving.

Suggested Citation

  • Vittoria F. Parrella & Luisa Molari, 2021. "Building Retrofitting System Based on Bamboo-Steel Hybrid Exoskeleton Structures: A Case Study," Sustainability, MDPI, vol. 13(11), pages 1-13, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:5984-:d:562425
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/11/5984/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/11/5984/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rayane de Lima Moura Paiva & Lucas Rosse Caldas & Adriana Paiva de Souza Martins & Patricia Brandão de Sousa & Giulia Fea de Oliveira & Romildo Dias Toledo Filho, 2021. "Thermal-Energy Analysis and Life Cycle GHG Emissions Assessments of Innovative Earth-Based Bamboo Plastering Mortars," Sustainability, MDPI, vol. 13(18), pages 1-24, September.
    2. M. Zardan Araby & Samsul Rizal & Abdullah & Mochammad Afifuddin & Muttaqin Hasan, 2022. "Deformation Capacity of RC Beam-Column Joints Strengthened with Ferrocement," Sustainability, MDPI, vol. 14(8), pages 1-20, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:5984-:d:562425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.