IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i11p5784-d559289.html
   My bibliography  Save this article

Development of a Matrix Analysis Methodology for Characterization of Short-Term Aging in Asphalt Binders Modified by Synthetic Wax

Author

Listed:
  • Ali Jamshidi

    (School of Science, Technology, and Engineering, University of the Sunshine Coast, Sunshine Coast 4556, Australia)

  • Greg White

    (School of Science, Technology, and Engineering, University of the Sunshine Coast, Sunshine Coast 4556, Australia)

  • Wim Van den bergh

    (Energy and Materials in Infrastructure and Buildings, Faculty of Applied Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium)

  • Seyed Reza Omranian

    (Energy and Materials in Infrastructure and Buildings, Faculty of Applied Engineering, University of Antwerp, Groenenborgerlaan 171, 2020 Antwerp, Belgium)

  • Meor Othman Hamzah

    (Sustainable Asphalt Research Group (SARG), School of Civil and Environment Engineering, Universiti Sains Malaysia, Nibong Tebal 14300, Pulau Pinang, Malaysia)

Abstract

In this study, an innovative methodology is proposed to characterize the short-term aging of asphalt binders using the matrix analysis method. The rotational viscosity and complex shear modulus of asphalt binders were chosen as target rheological properties for the analysis of aging. A set of square matrices was developed based on test temperatures and the synthetic additive wax content. Transformational short-term aging matrices were obtained that characterize the trend of the aging process as a function of binder type, temperature sweep, and additive percentage. The results of the matrix analysis show that the trend of short-term aging depends on the binder performance grade and the rheological characteristic chosen for the analysis of aging. In addition, transformational aging matrices can provide detailed information about the range of the aging rate and the trend in aging for each binder type. Furthermore, the components of the transformational matrices clearly show the sensitivity of the binders to aging. In conclusion, the matrix analysis of aging can be used to compare the effects of short-term aging of different asphalt binders.

Suggested Citation

  • Ali Jamshidi & Greg White & Wim Van den bergh & Seyed Reza Omranian & Meor Othman Hamzah, 2021. "Development of a Matrix Analysis Methodology for Characterization of Short-Term Aging in Asphalt Binders Modified by Synthetic Wax," Sustainability, MDPI, vol. 13(11), pages 1-14, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:5784-:d:559289
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/11/5784/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/11/5784/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Seyed Reza Omranian & Meor Othman Hamzah & Georgios Pipintakos & Wim Van den bergh & Cedric Vuye & Mohd Rosli Mohd Hasan, 2020. "Effects of Short-Term Aging on the Compactibility and Volumetric Properties of Asphalt Mixtures Using the Response Surface Method," Sustainability, MDPI, vol. 12(15), pages 1-16, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mujasim Ali Rizvi & Ammad Hassan Khan & Zia ur Rehman & Zubair Masoud & Aasim Inam, 2021. "Effect of Fractured Aggregate Particles on Linear Stress Ratio of Aggregate and Resilience Properties of Asphalt Mixes—A Way Forward for Sustainable Pavements," Sustainability, MDPI, vol. 13(15), pages 1-28, August.
    2. Mujasim Ali Rizvi & Ammad Hassan Khan & Zia ur Rehman & Aasim Inam & Zubair Masoud, 2021. "Evaluation of Linear Deformation and Unloading Stiffness Characteristics of Asphalt Mixtures Incorporating Various Aggregate Gradations," Sustainability, MDPI, vol. 13(16), pages 1-21, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:11:p:5784-:d:559289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.