IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i10p5680-d557451.html
   My bibliography  Save this article

Investigation of Alkali-Silica Reactivity in Sustainable Ultrahigh Performance Concrete

Author

Listed:
  • Safeer Abbas

    (Civil Engineering Department, University of Engineering and Technology Lahore, Lahore 54890, Pakistan)

  • Wasim Abbass

    (Civil Engineering Department, University of Engineering and Technology Lahore, Lahore 54890, Pakistan)

  • Moncef L. Nehdi

    (Department of Civil and Environmental Engineering, Western University, London, ON N6A 5B9, Canada)

  • Ali Ahmed

    (Civil Engineering Department, University of Engineering and Technology Lahore, Lahore 54890, Pakistan)

  • Muhammad Yousaf

    (Civil Engineering Department, University of Engineering and Technology Lahore, Lahore 54890, Pakistan)

Abstract

Considering its superior engineering properties, ultrahigh performance concrete (UHPC) has emerged as a strong contender to replace normal strength concrete (NSC) in diverse construction applications. While the mechanical properties of UHPC have been thoroughly explored, there is still dearth of studies that quantify the durability of UHPC, especially for sustainable mixtures made with local materials. Therefore, this research aims at investigating the alkali-silica reactivity (ASR) potential in sustainable UHPC in comparison with that of NSC. Sustainable UHPC mixtures were prepared using waste untreated coal ash (CA), raw slag (RS), and locally produced steel fibers. UHPC and benchmark NSC specimens were cast for assessing the compressive strength, flexural strength, and ASR expansion. Specimens were exposed to two curing regimes: accelerated ASR conditions (as per ASTM C1260) and normal water curing. UHPC specimens incorporating RS achieved higher compressive and flexural strengths in comparison with that of identical UHPC specimens made with CA. ASR expansion of control NSC specimens exceeded the ASTM C1260 limits (>0.20% at 28 days). Conversely, experimental results demonstrate that UHPC specimens incurred much less ASR expansion, well below the ASTM C1260 limits. Moreover, UHPC specimens incorporating steel fibers exhibited lower expansion compared to that of companion UHPC specimens without fibers. It was also observed that the mechanical properties of NSC specimens suffered more drastic degradation under accelerated ASR exposure compared to UHPC specimens. Interestingly, UHPC specimens exposed to accelerated ASR conditions attained higher mechanical properties compared to that of reference identical specimens cured in normal water. Therefore, it can be concluded that ASR exposure had insignificant effect on sustainable UHPC incorporating CA and RS, especially for specimens incorporating fibers. Results indicate that UHPC is a robust competitor to NSC for the construction of mega-scale projects where exposure to ASR conducive conditions prevails.

Suggested Citation

  • Safeer Abbas & Wasim Abbass & Moncef L. Nehdi & Ali Ahmed & Muhammad Yousaf, 2021. "Investigation of Alkali-Silica Reactivity in Sustainable Ultrahigh Performance Concrete," Sustainability, MDPI, vol. 13(10), pages 1-17, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:10:p:5680-:d:557451
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/10/5680/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/10/5680/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Safeer Abbas & Uzair Arshad & Wasim Abbass & Moncef L. Nehdi & Ali Ahmed, 2020. "Recycling Untreated Coal Bottom Ash with Added Value for Mitigating Alkali–Silica Reaction in Concrete: A Sustainable Approach," Sustainability, MDPI, vol. 12(24), pages 1-24, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. T. Sivageerthi & Bathrinath Sankaranarayanan & Syed Mithun Ali & Ali AlArjani & Koppiahraj Karuppiah, 2022. "Modeling Challenges for Improving the Heat Rate Performance in a Thermal Power Plant: Implications for SDGs in Energy Supply Chains," Sustainability, MDPI, vol. 14(8), pages 1-19, April.
    2. Farshad Dabbaghi & Maria Rashidi & Moncef L. Nehdi & Hamzeh Sadeghi & Mahmood Karimaei & Haleh Rasekh & Farhad Qaderi, 2021. "Experimental and Informational Modeling Study on Flexural Strength of Eco-Friendly Concrete Incorporating Coal Waste," Sustainability, MDPI, vol. 13(13), pages 1-22, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:10:p:5680-:d:557451. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.