IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i10p5550-d555652.html
   My bibliography  Save this article

A Holistic Multi-Objective Design Optimization Approach for Arctic Offshore Supply Vessels

Author

Listed:
  • Aleksander A. Kondratenko

    (Department of Mechanical Engineering, Aalto University, FI-00076 Aalto, Finland)

  • Martin Bergström

    (Department of Mechanical Engineering, Aalto University, FI-00076 Aalto, Finland)

  • Aleksander Reutskii

    (Department of Fleet Operations, Central Marine Research and Design Institute, 191015 St. Petersburg, Russia)

  • Pentti Kujala

    (Department of Mechanical Engineering, Aalto University, FI-00076 Aalto, Finland)

Abstract

This article presents a new holistic multi-objective design approach for the optimization of Arctic Offshore Supply Vessels (OSVs) for cost- and eco-efficiency. The approach is intended to be used in the conceptual design phase of an Arctic OSV. It includes (a) a parametric design model of an Arctic OSV, (b) performance assessment models for independently operating and icebreaker-assisted Arctic OSVs, and (c) a novel adaptation of the Artificial Bee Colony (ABC) algorithm for multi-objective optimization of Arctic OSVs. To demonstrate the feasibility and viability of the proposed optimization approach, a series of case studies covering a wide range of operating scenarios are carried out. The results of the case studies indicate that the consideration of icebreaker assistance significantly extends the feasible design space of Arctic OSVs, enabling solutions with improved energy- and cost-efficiency. The results further indicate that the optimal amount of icebreaking assistance and optimal vessel speed differs for different vessels, highlighting the motivation for holistic design optimization. The applied adaptation of the ABC algorithm proved to be well suited and efficient for the multi-objective optimization problem considered.

Suggested Citation

  • Aleksander A. Kondratenko & Martin Bergström & Aleksander Reutskii & Pentti Kujala, 2021. "A Holistic Multi-Objective Design Optimization Approach for Arctic Offshore Supply Vessels," Sustainability, MDPI, vol. 13(10), pages 1-22, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:10:p:5550-:d:555652
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/10/5550/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/10/5550/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peixoto, Crisley S. & Vieira, Giovani G.T.T. & Salles, Mauricio B.C. & Carmo, Bruno S., 2024. "Assessing the impact of power dispatch optimization and energy storage systems in Diesel–electric PSVs: A case study based on real field data," Applied Energy, Elsevier, vol. 357(C).
    2. Zvyagina, Tatiana & Zvyagin, Petr, 2022. "A model of multi-objective route optimization for a vessel in drifting ice," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:10:p:5550-:d:555652. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.