IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i10p5367-d552436.html
   My bibliography  Save this article

A Smart Surveillance System for People Counting and Tracking Using Particle Flow and Modified SOM

Author

Listed:
  • Mahwish Pervaiz

    (Department of Computer Science, Bahria University, Islamabad 44000, Pakistan)

  • Yazeed Yasin Ghadi

    (Department of Computer Science and Software Engineering, Al Ain University, Abu Dhabi 122612, United Arab Emirates)

  • Munkhjargal Gochoo

    (Department of Computer Science and Software Engineering, United Arab Emirates University, Al Ain 15551, United Arab Emirates)

  • Ahmad Jalal

    (Department of Computer Science, Air University, Islamabad 44000, Pakistan)

  • Shaharyar Kamal

    (Department of Computer Science, Air University, Islamabad 44000, Pakistan)

  • Dong-Seong Kim

    (Department of IT Convergence Engineering, Kumoh National Institute of Technology, Yanghodong 730-701, Korea)

Abstract

Based on the rapid increase in the demand for people counting and tracking systems for surveillance applications, there is a critical need for more accurate, efficient, and reliable systems. The main goal of this study was to develop an accurate, sustainable, and efficient system that is capable of error-free counting and tracking in public places. The major objective of this research is to develop a system that can perform well in different orientations, different densities, and different backgrounds. We propose an accurate and novel approach consisting of preprocessing, object detection, people verification, particle flow, feature extraction, self-organizing map (SOM) based clustering, people counting, and people tracking. Initially, filters are applied to preprocess images and detect objects. Next, random particles are distributed, and features are extracted. Subsequently, particle flows are clustered using a self-organizing map, and people counting and tracking are performed based on motion trajectories. Experimental results on the PETS-2009 dataset reveal an accuracy of 86.9% for people counting and 87.5% for people tracking, while experimental results on the TUD-Pedestrian dataset yield 94.2% accuracy for people counting and 94.5% for people tracking. The proposed system is a useful tool for medium-density crowds and can play a vital role in people counting and tracking applications.

Suggested Citation

  • Mahwish Pervaiz & Yazeed Yasin Ghadi & Munkhjargal Gochoo & Ahmad Jalal & Shaharyar Kamal & Dong-Seong Kim, 2021. "A Smart Surveillance System for People Counting and Tracking Using Particle Flow and Modified SOM," Sustainability, MDPI, vol. 13(10), pages 1-20, May.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:10:p:5367-:d:552436
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/10/5367/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/10/5367/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ahmad Jalal & Mouazma Batool & Kibum Kim, 2020. "Sustainable Wearable System: Human Behavior Modeling for Life-Logging Activities Using K-Ary Tree Hashing Classifier," Sustainability, MDPI, vol. 12(24), pages 1-21, December.
    2. Madiha Javeed & Munkhjargal Gochoo & Ahmad Jalal & Kibum Kim, 2021. "HF-SPHR: Hybrid Features for Sustainable Physical Healthcare Pattern Recognition Using Deep Belief Networks," Sustainability, MDPI, vol. 13(4), pages 1-28, February.
    3. Ahmad Jalal & Israr Akhtar & Kibum Kim, 2020. "Human Posture Estimation and Sustainable Events Classification via Pseudo-2D Stick Model and K-ary Tree Hashing," Sustainability, MDPI, vol. 12(23), pages 1-24, November.
    4. Nida Khalid & Munkhjargal Gochoo & Ahmad Jalal & Kibum Kim, 2021. "Modeling Two-Person Segmentation and Locomotion for Stereoscopic Action Identification: A Sustainable Video Surveillance System," Sustainability, MDPI, vol. 13(2), pages 1-30, January.
    5. Hira Ansar & Ahmad Jalal & Munkhjargal Gochoo & Kibum Kim, 2021. "Hand Gesture Recognition Based on Auto-Landmark Localization and Reweighted Genetic Algorithm for Healthcare Muscle Activities," Sustainability, MDPI, vol. 13(5), pages 1-26, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Madiha Javeed & Munkhjargal Gochoo & Ahmad Jalal & Kibum Kim, 2021. "HF-SPHR: Hybrid Features for Sustainable Physical Healthcare Pattern Recognition Using Deep Belief Networks," Sustainability, MDPI, vol. 13(4), pages 1-28, February.
    2. Hira Ansar & Ahmad Jalal & Munkhjargal Gochoo & Kibum Kim, 2021. "Hand Gesture Recognition Based on Auto-Landmark Localization and Reweighted Genetic Algorithm for Healthcare Muscle Activities," Sustainability, MDPI, vol. 13(5), pages 1-26, March.
    3. Nida Khalid & Munkhjargal Gochoo & Ahmad Jalal & Kibum Kim, 2021. "Modeling Two-Person Segmentation and Locomotion for Stereoscopic Action Identification: A Sustainable Video Surveillance System," Sustainability, MDPI, vol. 13(2), pages 1-30, January.
    4. Naif Al Mudawi & Mahwish Pervaiz & Bayan Ibrahimm Alabduallah & Abdulwahab Alazeb & Abdullah Alshahrani & Saud S. Alotaibi & Ahmad Jalal, 2023. "Predictive Analytics for Sustainable E-Learning: Tracking Student Behaviors," Sustainability, MDPI, vol. 15(20), pages 1-18, October.
    5. Jiacheng Wu & Han Cui & Naim Dahnoun, 2023. "A Voxelization Algorithm for Reconstructing mmWave Radar Point Cloud and an Application on Posture Classification for Low Energy Consumption Platform," Sustainability, MDPI, vol. 15(4), pages 1-13, February.
    6. Agnieszka Dudziak & Monika Stoma & Emilia Osmólska, 2023. "Analysis of Consumer Behaviour in the Context of the Place of Purchasing Food Products with Particular Emphasis on Local Products," IJERPH, MDPI, vol. 20(3), pages 1-23, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:10:p:5367-:d:552436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.