IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i9p3674-d353204.html
   My bibliography  Save this article

Optimizing the Environmental Profile of Fresh-Cut Produce: Life Cycle Assessment of Novel Decontamination and Sanitation Techniques

Author

Listed:
  • Miguel Vigil

    (Área de Proyectos de Ingenieria, Departamento de Explotación y Prospección de Minas, Universidad de Oviedo, Calle Independencia 13, 33004 Oviedo, Spain)

  • Maria Pedrosa Laza

    (Área de Proyectos de Ingenieria, Departamento de Explotación y Prospección de Minas, Universidad de Oviedo, Calle Independencia 13, 33004 Oviedo, Spain)

  • Henar Moran-Palacios

    (Área de Proyectos de Ingenieria, Departamento de Explotación y Prospección de Minas, Universidad de Oviedo, Calle Independencia 13, 33004 Oviedo, Spain)

  • JV Alvarez Cabal

    (Área de Proyectos de Ingenieria, Departamento de Explotación y Prospección de Minas, Universidad de Oviedo, Calle Independencia 13, 33004 Oviedo, Spain)

Abstract

Fresh-cut vegetables, namely those that undergo processes such as washing, sorting, or chopping while keeping their fresh state, constitute an important market element nowadays. Among those operations, the washing step becomes really important due both to the extensive use of water resources and to the utilization of controversial water sanitizing agents, such as chlorine. To ideally eliminate those chlorinated compounds while decreasing water consumption, four novel filtrating technologies (pulsed corona discharge combined with nanofiltration, NF-PCD; classical ultrafiltration, UF; nanofiltration membranes integrating silver nanoparticles, NF-AgNP; and microfiltration with cellulose acetate membranes containing chitin nanocrystals, ChCA) have been proposed to eliminate any contaminating agent in recirculated water. Here, we performed a life cycle assessment (LCA) to assess the environmental effects of introducing these new solutions and to compare those impacts with the burden derived from the current strategy. The novel technologies showed a decreased environmental burden, mainly due to the enhanced water recirculation and the subsequent decrease in energy consumption for pumping and cooling the water stream. The environmental gain would be maintained even if a certain amount of chlorine was still needed. This analysis could serve as an aid to decision-making while evaluating the introduction of new sanitizing techniques.

Suggested Citation

  • Miguel Vigil & Maria Pedrosa Laza & Henar Moran-Palacios & JV Alvarez Cabal, 2020. "Optimizing the Environmental Profile of Fresh-Cut Produce: Life Cycle Assessment of Novel Decontamination and Sanitation Techniques," Sustainability, MDPI, vol. 12(9), pages 1-17, May.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3674-:d:353204
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/9/3674/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/9/3674/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Javier García-Gudiño & Alessandra N. T. R. Monteiro & Sandrine Espagnol & Isabel Blanco-Penedo & Florence Garcia-Launay, 2020. "Life Cycle Assessment of Iberian Traditional Pig Production System in Spain," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    2. Alexi Ernstoff & Qingshi Tu & Mireille Faist & Andrea Del Duce & Sarah Mandlebaum & Jon Dettling, 2019. "Comparing the Environmental Impacts of Meatless and Meat-Containing Meals in the United States," Sustainability, MDPI, vol. 11(22), pages 1-14, November.
    3. Ghasemi-Mobtaker, Hassan & Kaab, Ali & Rafiee, Shahin, 2020. "Application of life cycle analysis to assess environmental sustainability of wheat cultivation in the west of Iran," Energy, Elsevier, vol. 193(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Llera, Rocio & Vigil, Miguel & Díaz-Díaz, Sara & Martínez Huerta, Gemma Marta, 2022. "Prospective environmental and techno-economic assessment of steam production by means of heat pipes in the steel industry," Energy, Elsevier, vol. 239(PD).
    2. Miguel Vigil & Maria Pedrosa-Laza & JV Alvarez Cabal & Francisco Ortega-Fernández, 2020. "Sustainability Analysis of Active Packaging for the Fresh Cut Vegetable Industry by Means of Attributional & Consequential Life Cycle Assessment," Sustainability, MDPI, vol. 12(17), pages 1-18, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nabavi-Pelesaraei, Ashkan & Azadi, Hossein & Van Passel, Steven & Saber, Zahra & Hosseini-Fashami, Fatemeh & Mostashari-Rad, Fatemeh & Ghasemi-Mobtaker, Hassan, 2021. "Prospects of solar systems in production chain of sunflower oil using cold press method with concentrating energy and life cycle assessment," Energy, Elsevier, vol. 223(C).
    2. Miguel Vigil & Maria Pedrosa-Laza & JV Alvarez Cabal & Francisco Ortega-Fernández, 2020. "Sustainability Analysis of Active Packaging for the Fresh Cut Vegetable Industry by Means of Attributional & Consequential Life Cycle Assessment," Sustainability, MDPI, vol. 12(17), pages 1-18, September.
    3. Naseri, Hakim & Parashkoohi, Mohammad Gholami & Ranjbar, Iraj & Zamani, Davood Mohammad, 2021. "Energy-economic and life cycle assessment of sugarcane production in different tillage systems," Energy, Elsevier, vol. 217(C).
    4. Dolores Ayuso & Ana González & Francisco Peña & Francisco I. Hernández-García & Mercedes Izquierdo, 2020. "Effect of Fattening Period Length on Intramuscular and Subcutaneous Fatty Acid Profiles in Iberian Pigs Finished in the Montanera Sustainable System," Sustainability, MDPI, vol. 12(19), pages 1-12, September.
    5. Mario Rafael Giraldi-Díaz & Eduardo Castillo-González & Lorena De Medina-Salas & Raúl Velásquez-De la Cruz & Héctor Daniel Huerta-Silva, 2021. "Environmental Impacts Associated with Intensive Production in Pig Farms in Mexico through Life Cycle Assessment," Sustainability, MDPI, vol. 13(20), pages 1-20, October.
    6. Antonia Katharina Ruckli & Sabine Dippel & Nora Durec & Monika Gebska & Jonathan Guy & Juliane Helmerichs & Christine Leeb & Herman Vermeer & Stefan Hörtenhuber, 2021. "Environmental Sustainability Assessment of Pig Farms in Selected European Countries: Combining LCA and Key Performance Indicators for Biodiversity Assessment," Sustainability, MDPI, vol. 13(20), pages 1-19, October.
    7. Llera, Rocio & Vigil, Miguel & Díaz-Díaz, Sara & Martínez Huerta, Gemma Marta, 2022. "Prospective environmental and techno-economic assessment of steam production by means of heat pipes in the steel industry," Energy, Elsevier, vol. 239(PD).
    8. Marius Kazlauskas & Indrė Bručienė & Dainius Savickas & Vilma Naujokienė & Sidona Buragienė & Dainius Steponavičius & Kęstutis Romaneckas & Egidijus Šarauskis, 2023. "Life Cycle Assessment of Winter Wheat Production Using Precision and Conventional Seeding Technologies," Sustainability, MDPI, vol. 15(19), pages 1-13, September.
    9. Javier García-Gudiño & Elena Angón & Isabel Blanco-Penedo & Florence Garcia-Launay & José Perea, 2022. "Targeting Environmental and Technical Parameters through Eco-Efficiency Criteria for Iberian Pig Farms in the dehesa Ecosystem," Agriculture, MDPI, vol. 13(1), pages 1-15, December.
    10. Jankowski, Krzysztof J. & Sokólski, Mateusz, 2021. "Spring camelina: Effect of mineral fertilization on the energy efficiency of biomass production," Energy, Elsevier, vol. 220(C).
    11. Benedetta Esposito & Maria Rosaria Sessa & Daniela Sica & Ornella Malandrino, 2020. "Towards Circular Economy in the Agri-Food Sector. A Systematic Literature Review," Sustainability, MDPI, vol. 12(18), pages 1-21, September.
    12. Xu, Bin & Lin, Boqiang, 2020. "Investigating drivers of CO2 emission in China’s heavy industry: A quantile regression analysis," Energy, Elsevier, vol. 206(C).
    13. Mayra L. Pazmiño & Angel D. Ramirez, 2021. "Life Cycle Assessment as a Methodological Framework for the Evaluation of the Environmental Sustainability of Pig and Pork Production in Ecuador," Sustainability, MDPI, vol. 13(21), pages 1-21, October.
    14. Ali Mohammadi & G. Venkatesh & Samieh Eskandari & Shahin Rafiee, 2022. "Eco-Efficiency Analysis to Improve Environmental Performance of Wheat Production," Agriculture, MDPI, vol. 12(7), pages 1-16, July.
    15. Ghasemi-Mobtaker, Hassan & Mostashari-Rad, Fatemeh & Saber, Zahra & Chau, Kwok-wing & Nabavi-Pelesaraei, Ashkan, 2020. "Application of photovoltaic system to modify energy use, environmental damages and cumulative exergy demand of two irrigation systems-A case study: Barley production of Iran," Renewable Energy, Elsevier, vol. 160(C), pages 1316-1334.
    16. Hamed Rafiee & Milad Aminizadeh & Elham Mehrparvar Hosseini & Hanane Aghasafari & Ali Mohammadi, 2022. "A Cluster Analysis on the Energy Use Indicators and Carbon Footprint of Irrigated Wheat Cropping Systems," Sustainability, MDPI, vol. 14(7), pages 1-19, March.
    17. Qu, Ziren & Luo, Ning & Guo, Jiameng & Xu, Jie & Wang, Pu & Meng, Qingfeng, 2024. "Enhancing sustainability in the new variety-based low emergy system for maize production by nitrogen optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    18. Hessampour, Reza & Bastani, Aboubakr & Hassani, Mehrdad & Failla, Sabina & Vaverková, Magdalena Daria & Halog, Anthony, 2023. "Joint life cycle assessment and data envelopment analysis for the benchmarking of energy, exergy, environmental effects, and water footprint in the canned apple supply chain," Energy, Elsevier, vol. 278(C).
    19. Jankowski, Krzysztof Józef & Dubis, Bogdan & Kozak, Marcin, 2021. "Sewage sludge and the energy balance of Jerusalem artichoke production - A case study in north-eastern Poland," Energy, Elsevier, vol. 236(C).
    20. Khanali, Majid & Ghasemi-Mobtaker, Hassan & Varmazyar, Hossein & Mohammadkashi, Naghmeh & Chau, Kwok-wing & Nabavi-Pelesaraei, Ashkan, 2022. "Applying novel eco-exergoenvironmental toxicity index to select the best irrigation system of sunflower production," Energy, Elsevier, vol. 250(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:9:p:3674-:d:353204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.