IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i8p3335-d347859.html
   My bibliography  Save this article

Optimization of Land Reuse Structure in Coal Mining Subsided Areas Considering Regional Economic Development: A Case Study in Pei County, China

Author

Listed:
  • Zhen Li

    (College of Land Science and Technology, China Agricultural University, Key Laboratory of Agricultural Land Quality, Ministry of Natural Resources, Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture and Rural Affairs, Beijing 100193, China)

  • Songlin Wu

    (Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, Brisbane 4067, Australia)

  • Shiwen Zhang

    (College of Earth and Environmental Sciences, Anhui University of Science and Technology, Huainan 232001, China)

  • Chaojia Nie

    (College of Earth and Environmental Sciences, Anhui University of Science and Technology, Huainan 232001, China)

  • Yong Li

    (College of Land Science and Technology, China Agricultural University, Key Laboratory of Agricultural Land Quality, Ministry of Natural Resources, Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture and Rural Affairs, Beijing 100193, China)

  • Yuanfang Huang

    (College of Land Science and Technology, China Agricultural University, Key Laboratory of Agricultural Land Quality, Ministry of Natural Resources, Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture and Rural Affairs, Beijing 100193, China)

Abstract

Land subsidence, which has caused large-scale settlement loss and farmland degradation, was regarded as the main constraint for land reclamation in the High Groundwater Coal Basins (HGCBs) in the eastern China plain. Both coal mining and agricultural production are important for regional development in this area. In general, the land reclamation direction in this area is greatly affected by the adequacy of filling materials and the land use demand of regional economic development. Taking seven coal mining subsided areas in Pei county, located in the eastern China plain, for example, this study proposed an integrated model (including the Limit Condition model, Logistic Regression model, Grey Linear Programming model and the conversion of land use and its effects at small regional extent (CLUE-S) model) to simulate and optimize the post-mining land use structure to meet the economic development needs of Pei county. Then, the post-mining land use structure under different scenarios, which were set based on the subsidence depth, were compared to explore the optimal collapse depth for separating the damaged land into the filling area and non-filling area. The landscape structure, ecological benefits, engineering quantity and reclaimed farmland area were used to compare the reclaimed land use structure of different scenarios. The results showed that the integrated model could efficiently simulate the reclaimed land use structure to meet the land demand for regional development. The optimal collapse depth for separating the damaged area into the filling area and non-filling area was 2.6 m. Currently, the reclaimed land use structure not only needs a low quantity of filling material, but also obtains a good landscape structure and elevated ecosystem services value. Furthermore, the reclaimed urban land was mainly distributed around Pei town, and the reclaimed farmland was mostly distributed in the area between Pei town and Weishan lake, which were consistent with the pattern of urbanization. The study provides valuable information for future land use plans for Pei county and will contribute to the methods of post-mining land reclamation in other HGCBs.

Suggested Citation

  • Zhen Li & Songlin Wu & Shiwen Zhang & Chaojia Nie & Yong Li & Yuanfang Huang, 2020. "Optimization of Land Reuse Structure in Coal Mining Subsided Areas Considering Regional Economic Development: A Case Study in Pei County, China," Sustainability, MDPI, vol. 12(8), pages 1-16, April.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3335-:d:347859
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/8/3335/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/8/3335/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yang, Xin & Zheng, Xin-Qi & Lv, Li-Na, 2012. "A spatiotemporal model of land use change based on ant colony optimization, Markov chain and cellular automata," Ecological Modelling, Elsevier, vol. 233(C), pages 11-19.
    2. Liu, Xiaoping & Ou, Jinpei & Li, Xia & Ai, Bin, 2013. "Combining system dynamics and hybrid particle swarm optimization for land use allocation," Ecological Modelling, Elsevier, vol. 257(C), pages 11-24.
    3. Lima, Ana T. & Mitchell, Kristen & O’Connell, David W. & Verhoeven, Jos & Van Cappellen, Philippe, 2016. "The legacy of surface mining: Remediation, restoration, reclamation and rehabilitation," Environmental Science & Policy, Elsevier, vol. 66(C), pages 227-233.
    4. Zhang, Biao & Li, Wenhua & Xie, Gaodi, 2010. "Ecosystem services research in China: Progress and perspective," Ecological Economics, Elsevier, vol. 69(7), pages 1389-1395, May.
    5. Jiang, Weiguo & Deng, Yue & Tang, Zhenghong & Lei, Xuan & Chen, Zheng, 2017. "Modelling the potential impacts of urban ecosystem changes on carbon storage under different scenarios by linking the CLUE-S and the InVEST models," Ecological Modelling, Elsevier, vol. 345(C), pages 30-40.
    6. Xiao, Wu & Fu, Yanhua & Wang, Tao & Lv, Xuejiao, 2018. "Effects of land use transitions due to underground coal mining on ecosystem services in high groundwater table areas: A case study in the Yanzhou coalfield," Land Use Policy, Elsevier, vol. 71(C), pages 213-221.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Izabela Jonek-Kowalska & Marian Turek, 2022. "The Economic Situation of Polish Cities in Post-Mining Regions. Long-Term Analysis on the Example of the Upper Silesian Coal Basin," Energies, MDPI, vol. 15(9), pages 1-21, April.
    2. Haozhe Zhang & Qingyuan Yang & Huiming Zhang & Lulu Zhou & Hongji Chen, 2021. "Optimization of Land Use Based on the Source and Sink Landscape of Ecosystem Services: A Case Study of Fengdu County in the Three Gorges Reservoir Area, China," Land, MDPI, vol. 10(11), pages 1-24, November.
    3. Xiangyu Min & Zhoubin Dong & Huaizhi Bo & Guodong Zheng & Qian Li & Xiaoyan Chang & Xinju Li, 2022. "Alternative Soil Substrates Addition Cause Deterioration in Reclaimed Soil Macropore Networks at Eastern Mining Area, China," Sustainability, MDPI, vol. 14(17), pages 1-15, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Dongya & Zheng, Xinqi & Zhang, Chunxiao & Wang, Hongbin, 2017. "A new temporal–spatial dynamics method of simulating land-use change," Ecological Modelling, Elsevier, vol. 350(C), pages 1-10.
    2. Liu, Dongya & Zheng, Xinqi & Wang, Hongbin, 2020. "Land-use Simulation and Decision-Support system (LandSDS): Seamlessly integrating system dynamics, agent-based model, and cellular automata," Ecological Modelling, Elsevier, vol. 417(C).
    3. Xiaoqing Zhao & Sinan Li & Junwei Pu & Peipei Miao & Qian Wang & Kun Tan, 2019. "Optimization of the National Land Space Based on the Coordination of Urban-Agricultural-Ecological Functions in the Karst Areas of Southwest China," Sustainability, MDPI, vol. 11(23), pages 1-20, November.
    4. Selamawit Haftu Gebresellase & Zhiyong Wu & Huating Xu & Wada Idris Muhammad, 2023. "Scenario-Based LULC Dynamics Projection Using the CA–Markov Model on Upper Awash Basin (UAB), Ethiopia," Sustainability, MDPI, vol. 15(2), pages 1-27, January.
    5. Yabo Zhao & Dixiang Xie & Xiwen Zhang & Shifa Ma, 2021. "Integrating Spatial Markov Chains and Geographically Weighted Regression-Based Cellular Automata to Simulate Urban Agglomeration Growth: A Case Study of the Guangdong–Hong Kong–Macao Greater Bay Area," Land, MDPI, vol. 10(6), pages 1-19, June.
    6. Han Wang & Yujie Jin & Xingming Hong & Fuan Tian & Jianxian Wu & Xin Nie, 2022. "Integrating IPAT and CLUMondo Models to Assess the Impact of Carbon Peak on Land Use," Land, MDPI, vol. 11(4), pages 1-16, April.
    7. Robert Costanza & Shuang Liu, 2014. "Ecosystem Services and Environmental Governance: Comparing China and the U.S," Asia and the Pacific Policy Studies, Wiley Blackwell, vol. 1(1), pages 160-170, January.
    8. Yuejuan Yang & Kun Wang & Di Liu & Xinquan Zhao & Jiangwen Fan & Jinsheng Li & Xiajie Zhai & Cong Zhang & Ruyi Zhan, 2019. "Spatiotemporal Variation Characteristics of Ecosystem Service Losses in the Agro-Pastoral Ecotone of Northern China," IJERPH, MDPI, vol. 16(7), pages 1-23, April.
    9. Wang, Han & Tian, Fuan & Wu, Jianxian & Nie, Xin, 2023. "Is China forest landscape restoration (FLR) worth it? A cost-benefit analysis and non-equilibrium ecological view," World Development, Elsevier, vol. 161(C).
    10. Guadalupe Azuara García & Efrén Palacios Rosas & Alfonso García-Ferrer & Pilar Montesinos Barrios, 2017. "Multi-Objective Spatial Optimization: Sustainable Land Use Allocation at Sub-Regional Scale," Sustainability, MDPI, vol. 9(6), pages 1-21, June.
    11. Chenhao Zhu & Jonah Susskind & Mario Giampieri & Hazel Backus O’Neil & Alan M. Berger, 2023. "Optimizing Sustainable Suburban Expansion with Autonomous Mobility through a Parametric Design Framework," Land, MDPI, vol. 12(9), pages 1-31, September.
    12. Qing Liu & Dongdong Yang & Lei Cao & Bruce Anderson, 2022. "Assessment and Prediction of Carbon Storage Based on Land Use/Land Cover Dynamics in the Tropics: A Case Study of Hainan Island, China," Land, MDPI, vol. 11(2), pages 1-24, February.
    13. Tan Li & Qingguo Zhang & Ying Zhang, 2018. "Modelling a Compensation Standard for a Regional Forest Ecosystem: A Case Study in Yanqing District, Beijing, China," IJERPH, MDPI, vol. 15(4), pages 1-20, March.
    14. Zhiyuan Ma & Xuejun Duan & Lei Wang & Yazhu Wang & Jiayu Kang & Ruxian Yun, 2023. "A Scenario Simulation Study on the Impact of Urban Expansion on Terrestrial Carbon Storage in the Yangtze River Delta, China," Land, MDPI, vol. 12(2), pages 1-16, January.
    15. Zhang, Jing & Brown, Colin & Qiao, Guanghua & Zhang, Bao, 2019. "Effect of Eco-compensation Schemes on Household Income Structures and Herder Satisfaction: Lessons From the Grassland Ecosystem Subsidy and Award Scheme in Inner Mongolia," Ecological Economics, Elsevier, vol. 159(C), pages 46-53.
    16. Changchang Liu & Chuxiong Deng & Zhongwu Li & Yaojun Liu & Shuyuan Wang, 2022. "Optimization of Spatial Pattern of Land Use: Progress, Frontiers, and Prospects," IJERPH, MDPI, vol. 19(10), pages 1-22, May.
    17. Kukkonen, M.O. & Khamis, M. & Muhammad, M.J. & Käyhkö, N. & Luoto, M., 2022. "Modeling direct above-ground carbon loss due to urban expansion in Zanzibar City Region, Tanzania," Land Use Policy, Elsevier, vol. 112(C).
    18. Michel Opelele Omeno & Ying Yu & Wenyi Fan & Tolerant Lubalega & Chen Chen & Claude Kachaka Sudi Kaiko, 2021. "Analysis of the Impact of Land-Use/Land-Cover Change on Land-Surface Temperature in the Villages within the Luki Biosphere Reserve," Sustainability, MDPI, vol. 13(20), pages 1-23, October.
    19. Meisam Jafari & Hamid Majedi & Seyed Masoud Monavari & Ali Asghar Alesheikh & Mirmasoud Kheirkhah Zarkesh, 2016. "Dynamic Simulation of Urban Expansion Based on Cellular Automata and Logistic Regression Model: Case Study of the Hyrcanian Region of Iran," Sustainability, MDPI, vol. 8(8), pages 1-18, August.
    20. Han, Yu & Jia, Haifeng, 2017. "Simulating the spatial dynamics of urban growth with an integrated modeling approach: A case study of Foshan, China," Ecological Modelling, Elsevier, vol. 353(C), pages 107-116.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:8:p:3335-:d:347859. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.