IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i6p2396-d334297.html
   My bibliography  Save this article

Impact of Mine Panel Size on Hydraulic Permeability of Weakly Cemented Strata

Author

Listed:
  • Gangwei Fan

    (State Key Laboratory of Coal Resources and Safe Mining, China University of Mining & Technology, Xuzhou 221116, China
    School of Mines, China University of Mining & Technology, Xuzhou 221116, China)

  • Shizhong Zhang

    (School of Mines, China University of Mining & Technology, Xuzhou 221116, China)

  • Bobo Cao

    (Ordos Haohua Clean Coal Co. Ltd, Ordos, Inner Mongolia 017205, China)

  • Dongsheng Zhang

    (State Key Laboratory of Coal Resources and Safe Mining, China University of Mining & Technology, Xuzhou 221116, China)

  • Chengguo Zhang

    (School of Minerals and Energy Resources Engineering, The University of New South Wales, Sydney 2052, Australia)

Abstract

The effect of underground coal mining on groundwater, ranging from minimal to severe depending on the mined-out panel size, is primarily associated with the change in ground hydraulic permeability. This paper presents a novel panel design method, taking consideration of reducing water loss during the mining operation, which is based on evaluating and ranking the impact of panel size on the hydraulic permeability of weakly cemented strata. The permeability test results of weakly cemented rock samples collected in the Yili No.4 Coal Mine in Xinjiang, China strongly indicates that, in contrast to common rock, their post-peak permeability during the total stress–strain process is lower than the initial permeability due to high porosity and the presence of clay minerals. A numerical modeling based on strain–permeability functions reveals that the post-mining permeability distribution in the weakly cemented overlying strata could be subdivided into three zones: the permeability reduction zone, the permeability restoring zone, and the permeability high-increment zone. The impact significance of different size factors on the post-mining permeability of overlying strata can be ranked in decreasing order as follows: mining height, panel width, and panel length, the quantification of which was based on the variance analysis of such indices as maximum pore pressure and maximum flow velocity. Based on the above findings, the optimal size of panel 21103 in the Yili No.4 Coal Mine was determined and validated by water level field observations.

Suggested Citation

  • Gangwei Fan & Shizhong Zhang & Bobo Cao & Dongsheng Zhang & Chengguo Zhang, 2020. "Impact of Mine Panel Size on Hydraulic Permeability of Weakly Cemented Strata," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2396-:d:334297
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/6/2396/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/6/2396/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rui Zhang & Zhenquan Jiang & Qiang Sun & Shuyun Zhu, 2013. "The relationship between the deformation mechanism and permeability on brittle rock," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 66(2), pages 1179-1187, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dan Ma & Haibo Bai, 2015. "Groundwater inflow prediction model of karst collapse pillar: a case study for mining-induced groundwater inrush risk," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 76(2), pages 1319-1334, March.
    2. Yuan Zhao & Shugang Cao & Yong Li & Hongyun Yang & Ping Guo & Guojun Liu & Ruikai Pan, 2018. "Experimental and numerical investigation on the effect of moisture on coal permeability," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 90(3), pages 1201-1221, February.
    3. Rui Zhang & Zhenquan Jiang & Haiyang Zhou & Chaowei Yang & Shuaijun Xiao, 2014. "Groundwater outbursts from faults above a confined aquifer in the coal mining," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 71(3), pages 1861-1872, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2396-:d:334297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.